

Supported by: Polish

ICN) grant under ecision No. DEC-

National Science Center

3/08/A/ST3/00708.

Quantized superfluid vortices in the unitary Fermi gas within time-dependent Superfluid Local Density Approximation

Gabriel Wlazłowski

Warsaw University of Technology University of Washington

Collaborators: Aurel Bulgac (UW), Michael McNeil Forbes (WSU, INT) Michelle M. Kelley (Urbana-Champaign) Kenneth J. Roche (PNNL,UW)

Motivation: The Challenge put forward by MIT experiment

Heavy solitons in a fermionic superfluid

Tarik Yefsah¹, Ariel T. Sommer¹, Mark J. H. Ku¹, Lawrence W. Cheuk¹, Wenjie Ji¹, Waseem S. Bakr¹ & Martin W. Zwierlein¹

426 | NATURE | VOL 499 | 25 JULY 2013

 ⁶Li atoms near a Feshbach resonance (N≈10⁶) cooled in harmonic trap (axially symmetric)

atoms near a Feshbach resonance = unitary Fermi gas

- Unitary limit: no interaction length scale...
- Universal physics...
 - Cold atomic gases
 - Neutron matter
 - High-Tc superconductors
- Simple, but hard to calculate! (Bertsch Many Body X-challenge)

Motivation: The Challenge put forward by MIT experiment

Heavy solitons in a fermionic superfluid

Tarik Yefsah¹, Ariel T. Sommer¹, Mark J. H. Ku¹, Lawrence W. Cheuk¹, Wenjie Ji¹, Waseem S. Bakr¹ & Martin W. Zwierlein¹

 $-\pi -\pi/2$

0

426 | NATURE | VOL 499 | 25 JULY 2013

- ⁶Li atoms near a Feshbach resonance (N≈10⁶) cooled in harmonic trap (axially symmetric)
- Step potential used to imprint a soliton (evolve to π phase shift)
- Let system evolve...

Experimental result

- Observe an oscillating "soliton" with long period T≈12T_z
- Inertial mass 200 times larger than the free fermion mass
- Interpreted as "Heavy Solitons"

Problem for theory:

- Bosonic solitons (BECs) oscillate with T≈1.4T_z
- Fermionic solitons (BdG) oscillate with T≈1.7T_z

Order of magnitude larger than theory!

DFT: workhorse for electronic structure simulations

- The Hohenberga-Kohn theorem assures that the theory can reproduce exactly the ground state energy if the "exact" Energy Density Functional (EDF) is provided
- Often called as ab initio method
- Extension to Time-Dependent DFT is straightforward
- Very successful DFT industry (commercial codes for quantum chemistry and solid-state physics)
- Can be extended to superfluid systems...
 (numerical cost increases dramatically)

EDF for UFG: Superfluid Local Density Approximation (SLDA)

<u>Dimensional arguments, renormalizability, Galilean invariance, and symmetries</u> (translational, rotational, gauge, parity) determine the functional (energy density)

Review: A. Bulgac, M.M. Forbes, P. Magierski,

Lecture Notes in Physics, Vol. 836, Chap. 9, p.305-373 (2012)

Three dimensionless constants α , β , and γ determining the functional are extracted from **QMC for homogeneous systems** by fixing the total energy, the pairing gap and the effective mass. *NOTE: there is no fit to experimental results*

SLDA has been verified and validated against a large number of quantum Monte Carlo results for inhomogeneous systems and experimental data as well

HYSICS.W

Figure 5. (color online) Relative energy change (in %) between simulations with $\alpha = 1$ and $\alpha = 1.14$ that compute the energy of N fermions (both even and odd particle numbers) in the unitary Fermi gas trapped in an isotropic harmonic oscillator.

Time-dependent extension

The real-time dynamics is given by equations, which are formally equivalent to the Time-Dependent HFB (TDHFB) or Time-Dependent Bogolubov-de Gennes (TDBdG) equations:

$$i\hbar\frac{\partial}{\partial t} \begin{pmatrix} u_{n,a}(\boldsymbol{r},t) \\ u_{n,b}(\boldsymbol{r},t) \\ v_{n,a}(\boldsymbol{r},t) \\ v_{n,b}(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} h_a(\boldsymbol{r},t) & 0 & \Delta(\boldsymbol{r},t) \\ 0 & h_b(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0 \\ 0 & -\Delta^*(\boldsymbol{r},t) & -h_a^*(\boldsymbol{r},t) & 0 \\ \Delta^*(\boldsymbol{r},t) & 0 & 0 & -h_b^*(\boldsymbol{r},t) \end{pmatrix} \begin{pmatrix} u_{n,a}(\boldsymbol{r},t) \\ u_{n,b}(\boldsymbol{r},t) \\ v_{n,a}(\boldsymbol{r},t) \\ v_{n,b}(\boldsymbol{r},t) \end{pmatrix}$$

The mean field potentials $h_i(\mathbf{r}, t)$ are derived from the EDF as functional derivative $h_i = \frac{\delta E}{\delta n_i}$ and they explicitly depends on local densities $n(\mathbf{r})$, $\tau(\mathbf{r})$, etc. The set of 4-component "wave functions" is in turn related to the densities and the pairing field $\Delta(\mathbf{r})$

"The time-dependent density functional theory is viewed in general as a reformulation of the exact quantum mechanical time evolution of a many-body system when only one-body properties are considered."

http://www.tddft.org

Solving...

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix} u_{n,a}(\mathbf{r},t)\\ u_{n,b}(\mathbf{r},t)\\ v_{n,a}(\mathbf{r},t)\\ v_{n,b}(\mathbf{r},t) \end{pmatrix} = \begin{pmatrix} h_a(\mathbf{r},t) & 0 & \Delta(\mathbf{r},t)\\ 0 & h_b(\mathbf{r},t) & -\Delta(\mathbf{r},t) & 0\\ 0 & -\Delta^*(\mathbf{r},t) & -h_a^*(\mathbf{r},t) & 0\\ \Delta^*(\mathbf{r},t) & 0 & 0 & -h_b^*(\mathbf{r},t) \end{pmatrix} \begin{pmatrix} u_{n,a}(\mathbf{r},t)\\ u_{n,b}(\mathbf{r},t)\\ v_{n,a}(\mathbf{r},t)\\ v_{n,b}(\mathbf{r},t) \end{pmatrix}$$

- The system is placed on a large 3D spatial lattice of size N_x×N_y×N_z
 - Discrete Variable Representation (DVR) solid framework (see for example: Bulgac, Forbes, Phys. Rev. C 87, 051301(R) (2013))

- * Errors are well controlled exponential convergence
- No symmetry restrictions
- Number of PDEs is of the order of the number of spatial lattice points
 - Typically (for cold atoms problems): 10⁵ 10⁶
 PHYSICS_UUT

Solving...

$$i\hbar\frac{\partial}{\partial t} \begin{pmatrix} u_{n,a}(\boldsymbol{r},t) \\ u_{n,b}(\boldsymbol{r},t) \\ v_{n,a}(\boldsymbol{r},t) \\ v_{n,b}(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} h_a(\boldsymbol{r},t) & 0 & \Delta(\boldsymbol{r},t) \\ 0 & h_b(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0 \\ 0 & -\Delta^*(\boldsymbol{r},t) & -h_a^*(\boldsymbol{r},t) & 0 \\ \Delta^*(\boldsymbol{r},t) & 0 & 0 & -h_b^*(\boldsymbol{r},t) \end{pmatrix} \begin{pmatrix} u_{n,a}(\boldsymbol{r},t) \\ u_{n,b}(\boldsymbol{r},t) \\ v_{n,a}(\boldsymbol{r},t) \\ v_{n,b}(\boldsymbol{r},t) \end{pmatrix}$$

- Derivatives are computed with FFT
 - insures machine accuracy
 - ★ very fast
- Integration methods:
 - Adams-Bashforth-Milne fifth order predictor-corrector-modifier integrator – very accurate but memory intensive
 - Split-operator method that respects time-reversal invariance (third order) – very fast, but can work with simple EDF

The spirit of SLDA is to exploit only local densities...

- Suitable for efficient parallelization (MPI)
- Excellent candidate for utilization multithreading computing units like GPUs

		GPU cluster				
MPI Space	Node with GPU	Grociuster	Lattice	# of	# of	time per
		qpwfs are distributed between GPUs in balanced		GPUs	qpwfs	step [s]
		rasmon	24x24x96	64	24425	0.33
		MPI communication between GPUs required	24x24x96	128	24425	0.17
		only to construct densities	24x24x96	256	24425	0.09
		Each GPU executes n n n	24x24x96	512	24425	0.06
		concurrent and independent threads.	32x32x128	256	57849	0.32
		Each thread is responsible for executing operation for single	32x32x128	313	57849	0.25
		lattice point either in position or momentum space.	48x48x128	512	129881	0.95
	Node with GPU		48x48x128	1024	129881	0.50
		<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	48x48x128	2048	129881	0.27
	S	\$\$\$\$\$\$\$	48x48x128	4096	129881	0.16
			48x48x128	8192	129881	0.10

15 times

Speed-up!!!

Lattice 64³, 137,062 (2-component) wave functions, ABM CPU version running on 16x4096=65,536 cores GPU version running on 4096 GPUs

What do fully 3D simulations see?

Movie 1

32×32×128, 560 particles

48×**48**×128, 1270 particles

Simulate larger systems – Extended Thomas-Fermi model

Fermionic simulations – numerically expensive, cannot reach 10⁶ particles...

Our solution: match ETF model (essentially a bosonic theory for the dimer/Cooper-pair wavefunction) with DFT...

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{4m} \vec{\nabla}^2 \Psi + 2 \frac{\partial \mathcal{E}_h(n,a)}{\partial n} \Psi + 2V_{ext} \Psi \qquad \qquad x = 1/k_F a$$

$$\mathcal{E}_h(n,a) = \frac{3}{5} \mathcal{E}_F n\xi \frac{\xi + x}{\xi + x(1 + \zeta) + 3.0\pi\xi x^2} - \frac{\hbar^2}{2ma^2} n \qquad \qquad \xi = 0.370$$

$$\zeta = 0.901 \text{ (the contact)}$$

- Accurate Equation of State state for a>0, speed of sound, phonon dispersion, static response, respects Galilean invariance
- Ambiguous role played by the "wave function," as it describes at the same time both the number density and the order parameter.
- Density depletion at vortex/soliton core exaggerated! Systematically underestimates time scales by a factor of close to 2

Simulate larger systems – Extended Thomas-Fermi model

Fermionic simulations – numerically expensive, cannot reach 10⁶ particles...

Our solution: match ETF model (essentially a bosonic theory for the dimer/Cooper-pair wavefunction) with DFT...

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{4m} \vec{\nabla}^2 \Psi + 2 \frac{\partial \mathcal{E}_h(n,a)}{\partial n} \Psi + 2V_{ext} \Psi \qquad \qquad x = 1/k_F a$$

$$\mathcal{E}_h(n,a) = \frac{3}{5} \mathcal{E}_F n\xi \frac{\xi + x}{\xi + x(1 + \zeta) + 3.0\pi\xi x^2} - \frac{\hbar^2}{2ma^2} n \qquad \qquad \xi = 0.370$$

PROBLEMS:

$$\zeta = 0.901 \text{ (the contact)}$$

- lacks a mechanisms for the superfluid to relax
- not suitable for the period shortly after the imprint where the system exhibits significant relaxation

Movie 2

suitable for studying the qualitative dynamics of vortex motion in large traps

Note: factor 2 for	Aspect Ratio	ETF Period	Observed Period [1]
(EFT Period)	$\lambda = 3.3$	$T = 9.9 T_z$	$T = 18(2)T_z$
(Exp. Period)	$\lambda = 6.2$	$T = 8.4 T_z$	$T = 14(2)T_z$
	$\lambda = 15$	$T = 6.7 T_z$	$T = 12(2)T_z$

Is it a vortex ring? (looks like a domain wall)

Subtle imaging: - needed expansion - must ramp to specific value of magnetic field

"Heavy Solition" = Superfluid Vortex

SIMILAR CONCLUSIONS:

- Matthew D. Reichl and Erich J. Mueller, Phys. Rev. A 88, 053626 (2013)
- Wen Wen, Changqing Zhao, and Xiaodong Ma, Phys. Rev. A 88, 063621 (2013)
- Lev P. Pitaevskii, arXiv:1311.4693
- Peter Scherpelz et al., arXiv:1401.8267 (vortex ring is unstable and converts into vortex line)

Update of the experiment

$$\omega_y/\omega_x - 1 \approx 5\%$$

Anisotropy: Due to gravity

RESULTS:

- Observe an oscillating <u>vortex line</u> with long period
- Always aligned along the short axis
- Precessional motion

anisotropy and anharmonicity

Trapping potential:

$$V(x, y, z) = \frac{m\omega_z^2 z^2}{2} + \mathcal{O}(z^4) + V_0 \left[1 - \exp\left(-\frac{m\omega_x^2 (x^2 + y^2)}{2V_0}\right) \right] + mgy. \quad (1)$$

Shifting $y \to y + y_0$ where y_0 is the new minimum gives the following effective trapping potential

$$V(x, y + y_0, z) \approx \frac{m\omega_z^2 z^2}{2} + \mathcal{O}(z^4) +$$

$$\frac{m\omega_x^2 x^2}{2} + \frac{m\omega_y^2 y^2}{2} + Cy^3 + \mathcal{O}(\delta^2) + \text{const} \quad (2)$$
Needed to generate single vortex line! (breaking of mirror symmetry)

where $\delta = 3mg^2/4\omega_x^2 V_0$ is treated perturbatively, and

$$\omega_y \approx \omega_x (1-\delta), \quad C \approx \frac{2m\omega_x^4}{3g}\delta.$$
 (3) **PHYSICS_WUT**

ded to see or

What do fully 3D simulations see?

Wlazłowski, Bulgac, Forbes, Roche, arXiv:1404.1038

Crossing and reconnection!

Movie 5 PHYSICS.WUT

Movie 4

Needed to get single vortex line, as seen in experiment.

CONCLUSIONS:

- DFT capable to explain all aspects of the experiment
 - ★ Long periods of oscillation...
 - ★ Vortex alignment...
- Correctly describes generation, dynamics, evolution, and eventual decay large number of degrees of freedom in the SLDA permit many mechanisms for superfluid relaxation: various phonon processes, Cooper pair breaking, and Landau damping
- Validates (TD)DFT...
- Can be used to engineer interesting scenarios: colliding of vortices, QT, vortex interactions...
 Movie 6
 MOVIE 6

Computational challenge: Finding initial (ground) state?

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_{n,a}(\boldsymbol{r},t)\\u_{n,b}(\boldsymbol{r},t)\\v_{n,a}(\boldsymbol{r},t)\\v_{n,b}(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_{a}(\boldsymbol{r},t) & 0 & 0 & \Delta(\boldsymbol{r},t)\\0 & h_{b}(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0\\0 & -\Delta^{*}(\boldsymbol{r},t) & -h_{a}^{*}(\boldsymbol{r},t) & 0\\\Delta^{*}(\boldsymbol{r},t) & 0 & 0 & -h_{b}^{*}(\boldsymbol{r},t)\end{pmatrix} \begin{pmatrix}u_{n,a}(\boldsymbol{r},t)\\u_{n,b}(\boldsymbol{r},t)\\v_{n,a}(\boldsymbol{r},t)\\v_{n,b}(\boldsymbol{r},t)\end{pmatrix}$$

$$\mathbf{E}_{n}$$
Real time evolution scaling: $O(N^{2} \ln N)$

Diagonalization:

diagonalizing the NxN single-particle Hamiltonian (an $O(N^3)$

- requires repeatedly diagonalizing the NxN single-particle Hamiltonian (an O(N³) operation) for the hundreds of iterations required to converge to the self-consistent ground state
- ★ only suitable for small problems or if symmetries can be used
- Imaginary time evolution:
 - ★ Non-unitary: spoils orthogonality of wavefunctions
 - ★ Re-orthogonalization unfeasible (communication)

Quantum friction

$$\begin{aligned} & \underbrace{dE}{dt} = \operatorname{Tr} \left\{ \mathcal{H}\dot{\mathcal{R}} \right\} = -i\operatorname{Tr} \left\{ \mathcal{H}[\mathcal{H} + \mathcal{V}_t, \mathcal{R}] \right\} = i\operatorname{Tr} \left\{ [\mathcal{H}, \mathcal{R}] \mathcal{V}_t \right\} \\ & \text{Note: } \operatorname{Tr} \left\{ AA^{\dagger} \right\} = \sum |A_{kl}|^2 \ge 0 \\ & \mathcal{V}_t \propto i[\mathcal{H}, \mathcal{R}]^{\dagger} \Rightarrow \frac{dE}{dt} \leqslant 0 \\ & \text{Non-local potential equivalent} \\ & \text{to "complex time" evolution} \\ & \text{Not suitable for fermionic problem} \end{aligned}$$

$$\text{``Local'' option: } \operatorname{Tr} \left\{ A \operatorname{diag}[A^{\dagger}] \right\} = \sum |A_{kk}|^2 \ge 0 \\ & \mathcal{V}_t \propto i \operatorname{diag} \left[[\mathcal{H}, \mathcal{R}]^{\dagger} \right] = -\hbar \nabla \cdot \boldsymbol{j}_t(\boldsymbol{r}) \checkmark \overset{\text{current}}{\overset{\text{current}}{\overset{\text{in the system, damping currents}}{\overset{\text{in the system, damping currents}}{\overset{\text{by being repulsive}}{\overset{\text{where they are converging}}} \end{aligned}$$

dimensionless constant of order unity

Quantum friction

- Does not guarantee convergence to ground state
 - st proceed with adiabatic state preparation $\ H_t \ = \ s_t H_1 \ + \ (1 \ \ s_t) H_0$
 - generally much faster than pure adiabatic state preparation
- Gain: computational scaling: $O(N^2 \ln N)$

 $\mathcal{V}_t = -eta rac{\hbar oldsymbol{
abla} \cdot oldsymbol{j}_t(oldsymbol{r})}{n_t(oldsymbol{r})}$

Related ongoing projects

- Quantum turbulence in UFG
- Pinning of vortices in neutron matter to nuclei
- Fission of a heavy nucleus

Collaboration Aurel Bulgac (UW) Michael McNeil Forbes (WSU, INT) Piotr Magierski (WUT, UW) Kenneth J. Roche (PNNL,UW) Ionel Stetcu (LANL) Gabriel Wlazłowski (WUT,UW)

Thank you

