# The Physics of the Neutron Star Crust-Core Transition: Observable Consequences and Nuclear Symmetry Energy Constraints

William G. Newton, Kyleah Murphy, Josh Hooker, Mike Gearheart, Farrukh Fattoyev, Bao-An Li

Texas A&M University-Commerce

De-Hua Wen

South China University of Technology
Jirina Rikovska Stone, Helena Pais
University of Tennessee







#### Outline

- Introduction
  - Observational motivation
  - Theoretical motivation
  - Neutron star structure
  - EOS and symmetry energy
- Neutron star models
  - Symmetry energy correlations with bulk crust properties
- Observable I: Cooling of the Cas A NS
- Observable II: Glitches in the Vela pulsar
- (Observable III: limiting periods of pulsars)
- (Observable V: Precursor flares to short Gamma-ray bursts)
- Conclusions: overview of observational constraints



Neutron star zoo – Alice Harding 1302.0869; Vicki Kaspi, Proc. Nat. Ac. Sci. 107, 16, 7147 (2010)



Neutron star zoo – Alice Harding 1302.0869; Vicki Kaspi, Proc. Nat. Ac. Sci. 107, 16, 7147 (2010)





Neutron star zoo – Alice Harding 1302.0869; Vicki Kaspi, Proc. Nat. Ac. Sci. 107, 16, 7147 (2010)



Neutron star zoo – Alice Harding 1302.0869; Vicki Kaspi, Proc. Nat. Ac. Sci. 107, 16, 7147 (2010)



Neutron star zoo – Alice Harding 1302.0869; Vicki Kaspi, Proc. Nat. Ac. Sci. 107, 16, 7147 (2010)



Picture courtesy of Achim Schwenk

10<sup>56</sup>

#### NEUTRON STAR;

- Result of stellar core collapse
- $\approx 1.4 \text{ M}_{\text{SUN}}, \text{ R} \approx 10 \text{km}$
- Bound by gravitational, not nuclear,

#### **Forces**

Nuclear forces determine structure of star



NASA





Picture courtesy of Achim Schwenk



Picture courtesy of Achim Schwenk

Microphysics of (hot,  $>10^{10}$ K), dense matter

- · Nuclear models/QCD
- · Weak interactions







Macrophysical Stellar Models
Inclusion of GR, MHD(with superfluids)</ti>

Bulk Properties of neutron star matter (meso/macrophysics):

- ·Thermal/electrical conductivity
- · Elastic properties (Bulk, shear modulus)
- · Hydrodynamic properties (superfluid, entrainment)
- Equation of State  $P = P(\rho,T)$



Calculation of observables and confrontation with observation

- ·Radio/X-ray Pulsars
- Bursts from NSs (XRBs/SGRs)
- · NS cooling
- · Gravitational waves?



# Neutron stars: the theoretical paradigm



$$\frac{dP}{dr} = -\frac{G}{r^2} \left[ M(r) + 4\pi r^3 \frac{P(r)}{c^2} \right] \left[ \rho(r) + \frac{P(r)}{c^2} \right] \left[ 1 - \frac{2GM(r)}{c^2 r} \right]^{-1}$$



Pressure balances gravity; we need EoS

$$P = P(\rho)$$

Obtained from energy density (or energy per Particle) of system:

$$E = E(\rho)$$

We're dealing with a bag of nucleons...

$$E(Z, N) = a_{\text{vol}} A + a_{\text{surf}} A^{2/3} + a_{\text{Coul}} Z^2 / A^{1/3} + a_{\text{symm}} (N - Z)^2 / A + \dots$$

...in the thermodynamic limit (N,A,Z to infinity, neglecting Coulomb)

$$E(\rho, \alpha)/A = a_{\text{vol}} + a_{\text{symm}}\alpha^2 + \dots$$

...and giving the coefficients a density dependence

$$E(\rho,\alpha)/A = E(\rho,0)/A + S(\rho)\alpha^2 + \dots$$

energy/particle of SNM Symmetry energy – penalty for moving away from N=Z symmetry









$$E(n,\delta) = E_0(n) + S(n)\delta^2 + \dots$$
  $\delta = 1 - 2x$   $S(n) = J + L\chi + \frac{K_{\text{sym}}}{2}\chi^2 + \dots$   $\chi = \frac{n - n_0}{3n_0}$ 

Other notations are available

Combined with Coulomb and beta-equilibrium conditions, obtain NS core EoS.

$$P_{\rm NS}(n_0) \approx \frac{n_0}{3}L + 0.048n_0 \left(\frac{J}{30}\right)^3 \left(J - \frac{4}{3}L\right)$$

#### Symmetry energy constraints



# Symmetry energy constraints



#### Symmetry energy constraints



- What constraints can we add from astrophysical observation?
- How can experimental/theoretical constraints inform our interpretation of observations?



## Symmetry energy constraints: NS radii



Lattimer, Steiner arXiv:1305.3242

- Bayesian analysis of inferred M/R ranges from transiently accreting/bursting NS sources
  - (Eddington luminosity, angular diameter and gravitational radius all f(M,R))
- Latest inferred L: 41 84 MeV
- Observational uncertainties: Hydrogen column density, X-ray spectral models, data precision
- Theoretical uncertainties: EOS model dependence?

## Symmetry energy constraints: NS radii





- Observational uncertainties: Hydrogen column density, X-ray spectral models, data precision
- Theoretical uncertainties: EOS model dependence?
- More independent astrophysical symmetry energy measurements needed!

## Neutron star modeling: consistent crust-core models



## Neutron star modeling: systematic variation of J,L

Skyrme-Hartree-Fock (SHF) model of nuclear matter:

$$\mathcal{H} = \frac{\hbar^2}{2M} \tau + t_0 \left[ (2 + x_0) \, \rho^2 - (2x_0 + 1) \left( \rho_{\rm n}^2 + \rho_{\rm p}^2 \right) \right] / 4 \\ + t_3 \rho^{\sigma} \left[ (2 + x_3) \, \rho^2 - (2x_3 + 1) \left( \rho_{\rm n}^2 + \rho_{\rm p}^2 \right) \right] / 24 \\ + \left[ t_2 \left( 2x_2 + 1 \right) - t_1 \left( 2x_1 + 1 \right) \right] \left( \tau_n \rho_n + \tau_p \rho_p \right) / 8 + \left[ t_1 \left( 2 + x_1 \right) + t_2 \left( 2 + x_2 \right) \right] \tau \rho / 8 \\ + \left[ 3t_1 \left( 2 + x_1 \right) - t_2 \left( 2 + x_2 \right) \right] \left( \nabla \rho \right)^2 / 32 - \left[ 3t_1 \left( 2x_1 + 1 \right) + t_2 \left( 2x_2 + 1 \right) \right] \left[ \left( \nabla \rho_{\rm n} \right)^2 + \left( \nabla \rho_{\rm p} \right)^2 \right] / 32 \\ + \left. W_0 \left[ \vec{J} \cdot \nabla \rho + \vec{J}_{\rm n} \cdot \nabla \rho_{\rm n} + \vec{J}_{\rm p} \cdot \nabla \rho_{\rm p} \right] / 2 + \left( t_1 - t_2 \right) \left[ J_{\rm n}^2 + J_{\rm p}^2 \right] / 16 - \left( t_1 x_1 + t_2 x_2 \right) J^2 / 16 \right. \\ - 9 \text{ parameters} \qquad \left. \left\{ t_0, t_1, t_2, t_3, x_0, x_1, x_2, x_3, \sigma \right\} \right. \\ - 2 \text{ purely isovector parameters: } x_0, x_3$$

Relativistic Mean Field (RMF) model of nuclear matter:

$$\begin{split} \mathscr{L} &= \ \bar{\psi} \left[ \gamma^{\mu} \left( i \partial_{\mu} - g_{\text{v}} V_{\mu} - \frac{g_{\rho}}{2} \boldsymbol{\tau} \cdot \mathbf{b}_{\mu} - \frac{e}{2} (1 + \tau_{3}) A_{\mu} \right) - (M - g_{\text{s}} \phi) \right] \psi + \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - \frac{1}{2} m_{\text{s}}^{2} \phi^{2} \\ &- \frac{1}{4} V^{\mu \nu} V_{\mu \nu} + \frac{1}{2} m_{\text{v}}^{2} V^{\mu} V_{\mu} - \frac{1}{4} \mathbf{b}^{\mu \nu} \cdot \mathbf{b}_{\mu \nu} + \frac{1}{2} m_{\rho}^{2} \mathbf{b}^{\mu} \cdot \mathbf{b}_{\mu} - \frac{1}{4} F^{\mu \nu} F_{\mu \nu} - U(\phi, V_{\mu}, \mathbf{b}_{\mu}) \;, \\ &U(\phi, V^{\mu}, \mathbf{b}^{\mu}) = \frac{\kappa}{3!} (g_{\text{s}} \phi)^{3} + \frac{\lambda}{4!} (g_{\text{s}} \phi)^{4} - \frac{\zeta}{4!} g_{\text{v}}^{4} (V_{\mu} V^{\mu})^{2} - \Lambda_{\text{v}} g_{\rho}^{2} \mathbf{b}_{\mu} \cdot \mathbf{b}^{\mu} g_{\text{v}}^{2} V_{\nu} V^{\nu} \\ &- 7 \; \text{parameters} \qquad \left\{ g_{\text{S}} \,, \, g_{\text{V}} \,, \, g_{\rho} \,, \, \kappa \,, \, \lambda \,, \, \zeta \,, \, \Lambda_{\text{V}} \right\} \\ &- 2 \; \text{purely isovector parameters} \quad \boldsymbol{g_{\rho}} \,, \, \boldsymbol{\Lambda}_{\text{V}} \end{split}$$

## PNM sequence of EOSs



(SP - Schwenk 2005, HS - Hebeler 2010, LO - Gezerlis 2013, AV8+UIX - Gandolfi 2010, APR - Akmal 1998)

#### Consistently calculate:

- Crust EOS
- Crust composition
- Crust-core transition density/
   Pressure
- Extent and sequence of pasta phases
- Core EOS/composition

# Observable I: Cooling of Cas A NS



## Cooling of Cas A NS

- Cas A NS: birth date 1680 ± 20yr (Fesen et al 2006)
- Thermal emission best fit\* using a Carbon atmosphere model (Ho & Heinke 2009)  $\rightarrow$  <T<sub>eff</sub> $> \approx 2.1 \times 10^6 \text{ K}.$
- Subsequent analysis of Chandra data taken over the previous decade  $\rightarrow$  evidence for rapid decrease in surface temperature by  $\approx$  4% (Heinke & Ho 2010).
- Detailed analysis of Chandra all X-ray detectors and modes → 2-5.5% temperature decline over the same time interval (Elshamouty et al. 2013).
- Definitive measurements difficult (surrounding bright and variable supernova remnant)
- \* "best" means most consistent with an emitting area of order the total neutron star surface





# Cooling of Cas A NS: Evidence for an astrophysical superfluid transition?



- Minimal cooling paradigm (MCP) (Page et al 2004) (only nucleonic components; fast v-emission processes (dUrca) excluded):
- Rapid cooling of the Cas A NS (CANS) from enhanced neutrino emission from neutron <sup>3</sup>P<sub>2</sub> Cooper pair breaking and formation (PBF) in the core (superfluid phase transition)
- Alternatives: medium modifications to standard v-emission processes, quark phases... (Blaschke et al. 2012; Sedrakian 2013)

# Cooling of Cas A NS: Evidence for an astrophysical superfluid transition?



- Max. of critical temperature T<sub>c</sub><sup>max</sup> controls age at which star enters PBF cooling phase
- Core temperature at onset of PBF cooling phase, T<sub>PBF</sub>, controls subsequent cooling rate > make steeper by suppressing mUrca process with proton superconductivity throughout core.

# Cooling of Cas A NS: Parameter Space in Minimal Cooling Scenario

In the Minimal Cooling Paradigm, three additional parameters affect the cooling trajectories of the NSs (Page et al.2004):

- The equation of state (EOS) of nuclear matter (NM).
- The mass of light elements in the atmosphere  $\Delta M_{light}$  parameterized as  $\eta = log (\Delta M_{light})$  (best fit -13 <  $\eta$  < -8 (Yakovlev et al. 2011))
  - More light elements means higher thermal conductivity and lower core temperature for a given  $T_{\rm eff}$ .
- The mass of Cas A NS  $\approx$  1.25 2M<sub>SUN</sub> with a most likely value of 1.65M<sub>SUN</sub> Yakovlev et al. 2011).

## v-emission in Nuclear pasta: Bubble cooling processes



- Neutron scattering off of bubble phases of pasta can lead to: dUrca (Gusakov et al. 2004) neutrino and anti-neutrino pair emission (Leinson 1993)
- Luminosity comparable with Modified Urca at core temperatures around onset of PBF cooling phase

$$L_{\nu}^{BCP} \sim 10^{40} T_9^6$$
  $L_{\nu}^{MU} \sim 10^{40} T_9^8$   $T_9 = T_{\text{core}}/10^9 \text{K}$ 

#### Model



(SP - Schwenk 2005, HS - Hebeler 2010, LO - Gezerlis 2013, AV8+UIX - Gandolfi 2010, APR - Akmal 1998)

- NS Crust and core EOSs and compositions calculated consistently using SkIUFSU Skyrme model (Fattoyev et al. 2012) which is fit to nuclear properties and ab-initio pure neutron matter calculations.
- Two Skyrme parameters are adjusted to vary the symmetry energy J and its density slope L at  $n_0$ . EOSs were created with L between 30MeV and 80MeV.
- With a fixed stellar mass, as L increases, the stellar radius and crust thickness increases and the fraction of the crust by mass composed of the bubble phases decreases (Newton et al. 2013).
- Cooling trajectories calculated using Dany Page's public code NSCool

#### Results



Even the lowest cooling rate (2%) inferred by Elshamouty et al is relatively rapid, favoring a relatively high core temperature and:

- Smaller value of L (smaller radii)
- Smaller stellar masses M
- Smaller η
- Less cooling from BCPs.

Newton, Murphy, Hooker, Li, ApJL 2013

# Cas A NS Cooling: Results and Summary

| $M(M_{\odot})$ | $\eta$ =-8; BCP | $\eta$ =-13; BCP       | $\eta$ =-8; no BCP | $\eta$ =-13; no BCP    |
|----------------|-----------------|------------------------|--------------------|------------------------|
| 1.25           | $\lesssim 45$   | -                      | $\lesssim 70$      | $\lesssim 55$          |
| 1.40           | -               | $\lesssim 35$          | $\lesssim 55$      | $\lesssim 55$          |
| 1.60           | -               | $\approx 35\text{-}45$ | -                  | $\approx 35\text{-}55$ |
| 1.80           | -               | -                      | -                  | -                      |

Ranges of L for which model cooling trajectories fall within the inferred rate from Elshamouty et al 2013

- Within minimal cooling paradigm, and using the inferred Cas A NS cooling rate from Elshamouty et al (2013), L < 70 MeV
- With the addition of enhanced cooling from v-emission processes in pasta phases
   L < 45 MeV i.e. cooling from the pasta phases can have an observable effect</li>

#### **CAVEATS**

- Carbon atmosphere model preferred largely because it results in emitting area of order neutron star size.
- Enhanced superfluidity in crust would suppress v-emission processes in pasta phases (gap parameter space not explored here).
- Posselt et al; arxiv:1311.0888 Chandra Cas A data consistent with no cooling in past decade!

# Observable I: Glitches in the Vela pulsar



# Pulsar glitches: the observations



- Sudden spin-up of pulse frequency on timescales of <10s of minutes, against steady spin-down
- First observed in 1969 in Crab, Vela pulsars



Fig. 1. The barycentric period of *PSR* 0833-45 as observed from November 22, 1968, to March 24, 1969, showing the 134 ns decrease between February 24 and March 3.





Fig. 1. Heliocentric period of PSR 0833-45 observed in February and March 1969, based on position a 08 h 33 m 39·0 s,  $\delta$  -45° 00′ 05·0″ (epoch 1950·0) (ref. 3). The rate of increase of the period was  $10\cdot69\pm0\cdot20$  ns day-¹ between December 8, 1968, and February 19, 1969. Since March 13, 1969, the rate of decay has been  $10\cdot64\pm0\cdot20$  ns day-¹. At some time between February 19 and March 13 the period decreased by 196 ns.

Radhakrishnan, Manchester; Nature 1969

# Pulsar glitches: the observations



• Activity parameter:  $A_{\rm g}$  = (1/T<sub>obs</sub>)  $\Sigma\Delta\Omega/\Omega$  = average rate of relative spin-up due to glitches

• Crab:  $A_{\rm g} \sim 10^{-9} \, {\rm yr}^{-1}$ 

• Vela:  $A_{\rm g} \sim 10^{-7} \, \rm yr^{-1}$ 

Espinoza et al 2011

## Pulsar glitches: the candidate model

- Starquake models: cannot explain glitch activity of even Crab pulsar
- Two component models currently the leading *class* of candidates
  - (A) Visible component (observed rotational frequency): couples to B-field on t<40s</li>







Inner Core;  $(n,p,e,\mu)$ ,  $(H,n/p,e,\mu)$ ,  $(\pi /K,n,p)$ ,  $(q,e,\mu)$ 

- Two dynamically distinct components of the star, A and B
- The B-field is coupled to component A on short timescales (<< spin period); we see only frequency of component A
- Initially, component B does not couple to A



Time



- The B-field is coupled to component A on short timescales (<< spin period); we see only frequency of component A
- Initially, component B does not couple to A
- $\bullet$  At some critical frequency lag between A and B,  $\Omega_{\text{lag}}$ , a strong coupling sets in between them – angular momentum transferred



Time





- Between glitches, angular momentum accumulates in the reservoir (B); released at time of glitch
- Angular momentum transfer during glitch:  $\Delta J = I_B \Delta \Omega_B = I_A \Delta \Omega_A$
- Component B needs to be large enough angular momentum reservoir to explain observed largest glitches (Vela)



Time

# Pulsar glitches: the role of core neutron superfluidity

- Neutrons in core and crust expected (from theory) to be superfluid for pulsars older than ≈ 100yr
- Some supporting evidence from rapid Cas A cooling (Shternin et al 2011, Page et al 2011)
- Superfluid component cannot support bulk rotation (gap suppresses interactions which cause, e.g., normal friction)
- Vorticity quantized

Polar cross section



Equatorial cross section



- Spacing of n vortices ~ 10<sup>-2</sup> cm
- As frequency decreases, vortices move out radially from the spin axis
- Protons entrained by vortices
- electron scattering couples
   vortices to crust on timescales
   t<sub>mf</sub> ≈ 10-10,000s
- Fraction of core neutrons coupled to crust on glitch timescales  $Y_g \approx t_{glitch}/t_{mf} = 1 10^{-3}$

## Pulsar glitches: the role of crust neutron superfluidity



- Energy of nucleus-vortex interaction
   either favors vortex cores threading nuclei
   or between nuclei in inner crust (~3 MeV/nucleus)
- Either way, work must be done by an external force to move vortices through the lattice
- The vortices are said to be pinned

- Pinning can sustain differential velocity up to ~ 10 rad / s ⇒large angular momentum reservoir! (Large enough?)
- When some critical velocity differential is reached, Magnus force unpins vortices > angular momentum transfer to crustal lattice



# Pulsar glitches: the role of crust neutron superfluidity

#### Chamel PRC85, 03992 (2012)



- Bragg scattering of neutrons off nuclei in crust
- Results in neutron band structure analogous to electrons in metals
- Couples 80% free neutrons to lattice

$$m_n^{\star} = m_n \frac{n_n^{\mathrm{f}}}{n_n^{\mathrm{c}}}.$$

| $\bar{n} \text{ (fm}^{-3}\text{)}$ | Z  | A    | $n_n^{\rm f}/n_n~(\%)$ | $n_n^{\rm c}/n_n^{\rm f}$ (%) | $m_n^{\star}/m_n$ |
|------------------------------------|----|------|------------------------|-------------------------------|-------------------|
| 0.0003                             | 50 | 200  | 20.0                   | 82.6                          | 1.21              |
| 0.001                              | 50 | 460  | 68.6                   | 27.3                          | 3.66              |
| 0.005                              | 50 | 1140 | 86.4                   | 17.5                          | 5.71              |
| 0.01                               | 40 | 1215 | 88.9                   | 15.5                          | 6.45              |
| 0.02                               | 40 | 1485 | 90.3                   | 7.37                          | 13.6              |
| 0.03                               | 40 | 1590 | 91.4                   | 7.33                          | 13.6              |
| 0.04                               | 40 | 1610 | 88.8                   | 10.6                          | 9.43              |
| 0.05                               | 20 | 800  | 91.4                   | 30.0                          | 3.33              |
| 0.06                               | 20 | 780  | 91.5                   | 45.9                          | 2.18              |
| 0.07                               | 20 | 714  | 92.0                   | 64.6                          | 1.55              |
| 0.08                               | 20 | 665  | 104                    | 64.8                          | 1.54              |





Crust superfluid neutrons

Crustal lattice, core protons, (some) core neutrons

Time



$$\Delta I/I \geqslant \frac{\bar{\Omega}}{|\dot{\Omega}|} \mathcal{A} = 0.016$$

(Link, Epstein, Lattimer; PRL83 1999)

OK for many reasonable EOSs



$$\Delta I/I \geqslant \frac{\bar{\Omega}}{|\dot{\Omega}|} \mathcal{A} = 0.016$$

(Link, Epstein, Lattimer; PRL83 1999)

Crust entrainment kills crust superfluid origin for glitches?

(Chamel, 2012; Andersson et al2012)

### ΔI reduced by factor of 5

Cannot be satisfied by "reasonable" EOSs (requires v. stiff @ saturation L>100 MeV, soft@high densities)



$$\Delta I/I \geqslant \frac{\bar{\Omega}}{|\dot{\Omega}|} \mathcal{A} = 0.016$$

(Link, Epstein, Lattimer; PRL83 1999)

Saved by core superfluid coupling on timescales larger than glitch rise time? (Link 2012; Haskell et al 2012; Seveso et al 2012)

ΔI reduced by factor of 5
I reduced by factor of 2-1000

**OK for most EOSs** 

# Pulsar glitches: the role of core neutron superfluidity

- Neutrons in core and crust expected (from theory) to be superfluid for pulsars older than ≈ 100yr
- Some supporting evidence from rapid Cas A cooling (Shternin et al 2011, Page et al 2011)
- Superfluid component cannot support bulk rotation (gap suppresses interactions which cause, e.g., friction)
- Vorticity quantized





Equatorial cross section



- Spacing of n vortices ~ 10<sup>-2</sup> cm
- As frequency decreases, vortices move out radially from the spin axis
- Protons entrained by vortices
- electron scattering couples vortices to crust on timescales  $t_{mf} \approx 10-10,000s$
- Fraction of core neutrons coupled to crust on glitch timescales  $Y_g \approx t_{glitch}/t_{mf} = 1 10^{-3}$



$$\Delta I/I \geqslant \frac{\bar{\Omega}}{|\dot{\Omega}|} \mathcal{A} = 0.016$$

(Link, Epstein, Lattimer; PRL83 1999)

Saved by core superfluid coupling on timescales larger than glitch rise time? (Link 2012; Haskell et al 2012; Seveso et al 2012)

ΔI reduced by factor of 5
I reduced by factor of 2-1000

**OK for most EOSs** 



$$\Delta I/I \geqslant \frac{\Omega}{|\dot{\Omega}|} \mathcal{A} = 0.016$$

(Link, Epstein, Lattimer; PRL83 1999)

Pinning only happens when vortices completely immersed in crust (the strong pinning region)
(Haskell et al 2012; Seveso et al 2012)

ΔI reduced by factor of 5?
I reduced by factor of 2-100
ΔI reduced by factor of approx. 10

Satisfied by "reasonable" EOSs?



Investigate efficacy of model given reasonable nuclear physics uncertainties

- Crustal entrainment strength e: 0-1
- Fraction of core sf neutrons coupled to crust on glitch rise timescale Y<sub>g</sub>
  - NS EOSs parameterized by symmetry energy slope L=25-115 MeV while maintaining good fit to low-density microscopic PNM calculations

$$G \equiv \frac{I_{\text{csf}}^{(\text{sp})}}{I_{\text{c}}} \geqslant \frac{\bar{\Omega}}{|\dot{\Omega}|} \mathcal{A} = 0.016$$

# Neutron star structure: 1.4M<sub>sun</sub>



- Effect of L:
  - Stellar radius: Lincreases, Rincreases
    - R increases, ΔR increases
  - Crust-core transition pressure: L increases, P<sub>t</sub> decreases, ΔR decreases\*
  - Core proton fraction: L increases, x<sub>p</sub> increases
  - Effect on e, Y<sub>g</sub>?

<sup>\*</sup>model dependent

# Neutron star structure: 1.4M<sub>sun</sub>



# Neutron star structure: 1.4M<sub>sun</sub>









## Results



- Constraint on G alone satisfied for very stiff saturation EOSs when e=1
- L>100 MeV
- Y<sub>g</sub>≈ 0

Solution: extend pinning into the core?

• Type II superconductivity

# Pulsar glitches: summary

#### Crust-driven glitches:

- Full entrainment:
  - G alone: L > 100 MeV,  $Y_g \approx 0$

#### Theoretical uncertainties

- Superfluid gaps! (density dependence)
- Crust entrainment (e): dependence on (i) nuclear force (ii) presence of pasta
- Core mutual friction (Y<sub>g</sub>); off-shell protons?
- Pinning force strength in core?

#### Pinning in core?

- Pinning penetrates core up to 0.05 fm<sup>-3</sup> above n<sub>cc</sub>:
  - G satisfied for any L, Y<sub>g</sub>

# Observable III: Upper limit on young neutron star periods



## Evidence of Pasta?



| Model | $M[M_{\odot}]$ | $I_{45}$ | $\Delta R_{crust}$ [km] | $\Delta R_{pasta}$ [km] | $Q_{imp}$ |
|-------|----------------|----------|-------------------------|-------------------------|-----------|
| Α     | 1.10           | 0.962    | 0.94                    | 0.14                    | 100       |
| В     | 1.40           | 1.327    | 0.70                    | 0.10                    | 100       |
| C     | 1.76           | 1.755    | 0.43                    | 0.07                    | 100       |
| D     | 1.40           | 1.327    | 0.70                    | 0.10                    | 10        |
| E     | 1.40           | 1.327    | 0.70                    | 0.10                    | 0.1       |

Pons, Vigano and Rea, Nature, 2013

- The population of young X-ray pulsars presents a cutoff in Periods at 10s
- Magnetic field must decay sufficiently fast
- Requires very high electrical resistivity in crust > highly disordered crust
- Simulations/post-thermonuclear burst cooling suggestive of quite pure crust (Hughto et al PRE84 (2011), Shternin et al MNRAS382 (2007, Brown and Cumming, ApJ698, (2009))
- Suggestive of very disordered layer at base of crust
- A lot of pasta favors soft symmetry energy



# Observable IV: precursor sGRB flares



# Observable: sGRB precursor flares

- NS-NS mergers strong candidates for sGRBs
- Precursor flares observed 1-10s before 4 GRBs
- Possible interpretation: crust shattering by tidal excitation of crustal oscillation mode resonance (Tsang et al PRL108, 2012)



L = 45 MeV

# **Overall Conclusions**

| Observable                        | L (MeV)                       | Specific (general) conditions/caveats                                                       |
|-----------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|
| Cooling rate of Cas A             | ≲ 70                          | No pasta cooling processes                                                                  |
| neutron star                      | ≲ 45                          | Pasta cooling processes active and unsuppressed by crust superfluity                        |
|                                   | ~                             | (Minimal cooling paradigm; range of L contingent on atmosphere model)                       |
| Limiting spin period of high      | ≲ 80                          | Magnetic field decay from highly resistive pasta layer, not                                 |
| magnetic field X-ray pulsars      |                               | high resistivity of an amorphous/heterogeneous inner crust                                  |
| Vela pulsar glitches              | ≥ 100                         | Full crustal entrainment, very weak crust-core coupling.                                    |
|                                   |                               | Glitch mechanism might involve angular momentum transfer                                    |
|                                   |                               | from core components.                                                                       |
| QPOs in X-ray tails of            | ≲ 60                          | Calculated frequencies fall in range of potential observed fundamental                      |
| giant flares from SGRs            |                               | frequencies; consistent crust-core EOS;                                                     |
|                                   |                               | limiting superfluid, pasta effects included                                                 |
|                                   | ≥ 50                          | Exact matching of fundamental mode with lowest observed frequency                           |
|                                   |                               | QPO; inconsistent crust, core models; no superfluid effects;                                |
|                                   | $100 \lesssim L \lesssim 130$ | Exact matching of all observed frequency with crust modes;                                  |
|                                   |                               | inconsistent crust, core models; superfluid effects included                                |
|                                   | $58 \lesssim L \lesssim 85$   | As above, but with the 2nd lowest observed frequency from SGR1806-20                        |
|                                   |                               | omitted in mode indentification                                                             |
|                                   |                               | (Alfven wave coupling to crust modes ignored.                                               |
|                                   |                               | Low frequency modes could be explained by pure Alfven modes.)                               |
| Limiting spin-up                  | ≲ 65                          | Consistent crust-core EOS; viscous                                                          |
| frequency of                      |                               | dissipation at crust-core boundary                                                          |
| millisecond pulsars               | $\gtrsim 50$                  | Inconsistent crust-core model; viscous                                                      |
|                                   |                               | dissipation throughout entire core                                                          |
|                                   |                               | (Crust not perfectly rigid. r-mode saturation might allow stars to spin                     |
|                                   |                               | <ul> <li>-up into instability window. Superfluid, exotic shear viscosity sources</li> </ul> |
|                                   |                               | ignored. Alternative physical mechanisms that limit spin-up are possible.)                  |
| Observed occurrence               | $60 \lesssim L \lesssim 80$   | Inconsistent crust-core EOS. Observational interpretation                                   |
| times of precursor                |                               | of pre-cursor gamma ray signals tentative.                                                  |
| $\gamma$ -ray flares before sGRBs |                               |                                                                                             |

Newton et al, EPJA 2014

## **Overall Conclusions**

#### Consistently calculate:

- Crust EOS
- Crust composition
- Crust-core transition density/pressure
- Extent and sequence of pasta phases
- Core EOS/composition

#### Need to add...

- Superfluid properties, entrainment, mutual friction
- Conductivities (esp. pasta)
- Mechanical properties (shear modulus...)
- •

# Observable: sGRB precursor flares

- NS-NS mergers strong candidates for sGRBs
- Precursor flares observed 1-10s before 4 GRBs

L=95 MeV

• Possible interpretation: crust shattering by tidal excitation of crustal oscillation mode resonance (Tsang et al PRL108, 2012)



L = 45 MeV

# Observable: QPOs from X-ray tail of SGR flares



- Soft Gamma-ray Repeaters (SGRs)
  - Neutron stars which emit occasional bursts of radiation in hard X-ray and soft gamma-ray
  - Energy from B-field decay; based on energetics of bursts and changes in NS rotation period, B≈10<sup>15</sup>G (magnetars)
  - Quasi periodic oscillations in the intensity of the X-ray tail of the lightcurve detected from 3 SGRs

### Symmetry energy sensitive observables: QPOs from X-ray tail of SGR flares





T. E. Strohmayer, A. L. Watts, APJ **653**, (2006)

### Symmetry energy sensitive observables: QPOs from X-ray tail of SGR flares



- If one of the low frequency QPOs is the fundamental frequency, L < 70MeV and pasta is solid-like
- compare
- Sotani et al PRL108 (2012):

- Sotani et al MNRAS428 (2013)

Modeling ignores coupling to core modes

Gearheart, Newton, Li; MNRAS 418 (2011)

## Crust-core transition pressure

- Transition pressure most important quantity for determining crust mass, thickness
- Requires knowledge of L, K<sub>sym</sub> at sub-saturation densities (or L, K<sub>sym</sub> +... at saturation density)



## Crust-core transition pressure

- Transition pressure most important quantity for determining crust mass, thickness
- Requires knowledge of L, K<sub>sym</sub> at sub-saturation densities (or L, K<sub>sym</sub> +... at saturation density)



## Crust-core transition pressure

- Transition pressure most important quantity for determining crust mass, thickness
- Requires knowledge of L,  $K_{sym}$  at sub-saturation densities (or L,  $K_{sym}$  +... at saturation density)

