T-2, Nuclear and Particle Physics, Astrophysics and Cosmology

Effective field theories for dark matter direct detection

Jure Zupan
University of Cincinnati

I will discuss the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. In general, a single partonic operator already matches onto several nonrelativistic operators at leading order in chiral counting. Thus, keeping only one operator at the time in the nonrelativistic effective theory does not properly describe the scattering in direct detection. Moreover, the matching of the axial--axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, naively include momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important. I will illustrate the impact of these effects with several examples. Finally, I will comment about the importance of renormalization group running in direct dark matter detection.

NNSA


Contact Us | Careers | Bradbury Science Museum | Emergencies | Inside LANL | Maps | Site Feedback | SSL Portal | Training

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA© Copyright 2010-11 LANS, LLC All rights reserved | Terms of Use | Privacy Policy