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Abstract: Recent compilations of experimental gross β-decay properties, i.e. half-lives (T1/2) and neutron-
emission probabilities (Pn), are compared to improved global macroscopic-microscopic model pre-
dictions. The model combines calculations within the quasi-particle random-phase approximation
(QRPA) for the Gamow-Teller (GT) part, with an empirical spreading of the QP-strength, and
the gross theory for the first-forbidden (ff) part of β−-decay. Nuclear masses are either taken from
the recent Audi et al. data compilation, when available, or from the finite-range droplet model
(FRDM). In particular for spherical and neutron-(sub-)magic isotopes, a considerable improve-
ment compared to our earlier predictions for pure GT-decay [ADNDT 1997] is observed. T1/2 and
Pn values up to the neutron drip-line have been applied to r-process calculations within the classical
“waiting-point” approximation. With the new nuclear-physics input, a considerable speeding-up
of the r-matter flow is observed, in particular at the r-abundance peaks which are related to magic
neutron-shell closures.
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1 Introduction

Interactions between astrophysics and nuclear physics have been longstanding and rewarding. To
the nuclear physicist many phenomena in the universe represent nuclear experiments on a grand
scale, often under conditions that cannot be replicated on earth. To the astrophysicist nuclear
physics represents experimental and theoretical sources of data which are needed to model the
energy balances and time scales in many astrophysical scenarios. Examples of this dichotomy
are the explanation of the source of the energy production in the sun and the postulation of a
rapid-neutron-capture process, or r-process [1] as the origin of many heavy nuclei beyond Fe.

To us, modeling the r-process has represented a particularly fascinating challenge. Its de-
tailed study requires input of nuclear data from experiment and/or theory. However, properly
designed studies can also provide information to the nuclear theorist on nuclear properties far
from stability that are inaccessible to experimental study. Informative studies of the r-process
can be accomplished with a knowledge of just a few nuclear properties, namely the nuclear mass,
from which neutron separation energies Sn and β-decay Qβ values can trivially be obtained, the
β-decay half-lives T1/2, and β-delayed neutron-emission probabilities Pνn. More elaborate stud-
ies require additional quantities for example reaction rates and temperature dependences of
many quantities.

A great leap forward in our understanding of the r-process and other stellar nucleo-synthesis
processes took place about 10 years ago when data from global, unified, microscopic nuclear-
structure models for the nuclear mass and β-decay were used for the first time in such calcu-
lations [2]. A key new feature was the reliability of the nuclear-structure models also outside
the regions where the model parameters were determined that is for regions of neutron-rich
nuclei beyond the experimentally known region near β-stability. Most influential in the first
studies of this type were the “Möller–Nix” mass models and the “Krumlinde–Möller–Randrup”
Quasi-Particle Random-Phase (QRPA) model of β-decay. The first “Möller-Nix” mass model
was published in 1981 [3]; its current enhanced form (FRDM (1992)) was finalized in 1992 and
published in 1995 [4]. The initial QRPA model is from 1984 [5] with numerous enhancements
added over the next several years. An extensive discussion of the enhanced model was published
in 1990 [6]. Tabulated β-decay properties for 8979 nuclei from 16O and beyond appeared in
1997 [7].

There are only a very few realistic mass models in which microscopic effects are calculated
from microscopic effective interactions. Single-particle potentials in the macroscopic-microscopic
approach and two-body Skyrme-type potentials in Hartree-Fock models are two examples of
such “microscopic” interactions. Calculations based on such potentials are, apart from the
work mentioned above, for example the early work by Seeger and Howard [8] in a macroscopic-
microscopic approach and more current work based on Skyrme interactions [9–11] All these
mass models have an rms error of about 0.7 MeV in the region where the model constants were
adjusted, and do not diverge, so far, outside the region of adjustment, that is when new masses
are measured and compared to published masses the rms error is still about 0.7 MeV. Despite
such errors much has been learned about the r-process from calculations based on these nuclear
data sources.

It is noteworthy that for 20 years the error of the realistic, extrapolatable mass models has
remained fairly constant at about 0.7 MeV (our 1981 mass model error was 0.835 MeV). Very
recently we have even seen results of the first self-consistent HF mass model with two-body
Skyrme-type forces with optimized parameters. Also in this approach the mass model rms error
is near 0.7 MeV. A recent analysis by Bohigas and Lebœuf [12, 13] proposes that this empirically
observed lower limit that seems almost like a brick wall that is impossible to surmount is actually
obtained as a lower limit for the error for models of this type from very general and fundamental
arguments. Because of correlations in the mass errors for nuclei close to each other in the
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nuclear chart, this translates to about ±0.5 MeV errors in calculated Qβ and Sn values. It may
therefore be very difficult to develop a mass model that is not subject to these limitations. In
our efforts to improve the nuclear data input of our astrophysical r-process calculations we will
therefore in our new studies here focus less on the mass models and the masses they produce,
which directly relates to the structure of the r-abundances and instead concentrate more on the
β-decay models from which we obtain decay half-lives that relate directly to the time-scale of the
r-process. However, due to correlations of Qβ and Sn errors with calculated β-decay properties
again for nuclei far from stability T1/2 and Pn values can only be predicted within about a factor
2 to 3. We will therefore present some highlights of the 1990 version of our β-decay model and
then introduce and justify two enhancements to this model. We then study the consequences of
the model improvements in r-process calculations.

2 Models

Theoretically, the two integral β-decay quantities, T1/2 and Pn, are interrelated via their usual
definition in terms of the so-called β-strength function (Sβ(E)) [14]:

1/T1/2 =
∑

0≤Ei≤Qβ

Sβ(Ei)× f(Z,R,Qβ − Ei); (1)

where R is the nuclear radius, Qβ is the maximum β-decay energy (or the isobaric mass differ-
ence) and f(Z,R,Qβ −Ei) the Fermi function. With this definition, T1/2 may yield information
on the average β-feeding of a nucleus. However, since the low-energy part of its excitation spec-
trum is strongly weighted by the energy factor of β-decay, f ∼ (Qβ − Ei)

5, T1/2 is dominated
by the lowest-energy resonances in Sβ(Ei); i.e. by the (near-) ground-state allowed GT or ff
transitions.

The β-delayed neutron emission probability (Pn) is schematically given by

Pn =

∑Qβ

Bn
Sβ(Ei)f(Z,R,Qβ −Ei)

∑Qβ

0 Sβ(Ei)f(Z,R,Qβ −Ei)
(2)

thus defining Pn as the ratio of the integral β-intensity to states above the neutron separation
energy Sn to the total β-intensity. As done in nearly all Pn calculations, in the above equation,
the ratio of the partial widths for l-wave neutron emission (Γj

n(En)) and the total width (Γtot =
Γj
n(En) + Γγ) is set equal to 1; i.e. possible γ-decay from neutron-unbound levels is neglected.

Again, because of the (Qβ − E)5 dependence of the Fermi function, the physical significance of
the Pn quantity is limited, too. It mainly reflects the β-feeding to the energy region just beyond
Sn. Taken together, however, the two gross decay properties, T1/2 and Pn, may well provide
some first information about the nuclear structure determining β-decay. Generally speaking, for
a given Qβ value a short half-life usually correlates with a small Pn value, and vice versa. This is
actually more than a simple rule of thumb; it can be used to check the consistency of experimental
numbers. Sometimes even global plots of double-ratios of experimental to theoretical Pn to T1/2

relations are used to show systematic trends, see for example Ref. [15]. Several impressive
examples in literature show that it is sometimes possible to identify special nuclear-structure
features solely from T1/2 and Pn. Among them are: (i) the development of single-particle
(SP) structures and related ground-state shape changes in the 50 ≤ N ≤ 60 region of the Sr
isotopes [5, 16], (ii) the at that time totally unexpected prediction of collectivity of neutron-magic
(N=28) 44S situated two proton-pairs below the doubly-magic 48Ca [17], and (iii) the very recent
interpretation of the surprising decay properties of 131,132Cd just above N = 82 [18–20].
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Today, in studies of nuclear-structure features, even of gross properties such as the T1/2 and
Pn values considered here, a substantial number of different theoretical approaches are used. The
significance and sophistication of these models and their relation to each other should, however,
be clear before they are applied. In general, one can assign the nuclear models used to calculate
the above two decay properties to the following different groups:

1. Models where the physical quantity of interest is given by an expression such as a polyno-
mial or an algebraic expression.
Normally, the parameters are determined by adjustments to experimental data and de-
scribe only a single nuclear property. No nuclear wave functions are obtained in these
models. Examples of theories of this type are purely empirical approaches that assume
a specific shape of Sβ(E) (either constant or proportional to level density), such as the
Kratz-Herrmann formula [21] or the statistical gross theory of β-decay [22, 23] These mod-
els can be considered to be analogous to the liquid-drop model of nuclear masses, and are
—again— appropriate for dealing with average properties of β-decay, however taking into
account the Ikeda sum-rule to quantitatively define the total strength. In both types of
approaches, model-inherently no insight into the underlying single-particle (SP) structure
is possible.

2. Models that use an effective nuclear interaction and usually solve the microscopic quantum-
mechanical Schrödinger or Dirac equation.
The approaches that actually solve the Schrödinger equation provide nuclear wave func-
tions which allow a variety of nuclear properties (e.g. ground-state shapes, level energies,
spins and parities, transition rates, T1/2, Pνn, etc.) to be modeled within a single frame-
work. Most theories of this type that are currently used in large-scale calculations, such
as e.g. the FRDM+QRPA model [7] used here or the ETFSI+cQRPA approach [9, 24], in
principle fall into two subgroups, depending on the type of microscopic interaction used.
Another aspect of these models is, whether they are restricted to spherical shapes, or to
even-even isotopes, or whether they can describe all nuclear shapes and all types of nuclei:

(a) SP approaches that use a simple central potential with additional residual interac-
tions. The Schrödinger equation is solved in a SP approximation and additional two-
body interactions are treated in the BCS, Lipkin-Nogami, or RPA approximations,
for example. To obtain the nuclear potential energy as a function of shape, one com-
bines the SP model with a macroscopic model, which then leads to the macroscopic-
microscopic model. Within this approach, the nuclear ground-state energy is calcu-
lated as a sum of a microscopic correction obtained from the SP levels by use of the
Strutinsky method and a macroscopic energy.

(b) Hartree-Fock-type models, in which the postulated effective interaction is of a two-
body type. If the microscopic Schrödinger equation is solved then the wave functions
obtained are anti-symmetrized Slater determinants. In such models, it is possible to
obtain the nuclear ground-state energy as E =< Ψ0|H|Ψ0 >, otherwise the HF have
many similarities to those in category 2a but have fewer parameters.

In principle, models in group 2b are expected to be more accurate, because the wave functions
and effective interactions can in principle be more realistic. However, two problems still remain
today: what effective interaction is sufficiently realistic to yield more accurate results, and what
are the optimized parameter values for such a two-body interaction?
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Some models in category 2 have been overparameterized, which means that their microscopic
origins have been lost and the results are just parameterizations of the experimental data. Ex-
amples of such models are the calculations Refs. [25, 26], where the strength of the residual GT
interaction has been fitted for each element (Z-number) in order to obtain optimum reproduction
of known T1/2 and Pn values in each isotopic chain.

To conclude this section, let us emphasize that there is no “correct” model in nuclear physics.
Any modeling of nuclear-structure properties involves approximations of the true forces and
equations with the goal to obtain a formulation that can be solved in practice, but that “retains
the essential features” of the true system under study, so that one can still learn something.
What we mean by this, depends on the actual circumstances. It may well turn out that when
proceeding from a simplistic, macroscopic approach to a more microscopic model, the first over-
all result may be “worse” just in terms of agreement between calculated and measured data.
However, the disagreements may now be understood more easily, and further nuclear-structure-
based, realistic improvements will become possible.

3 Prediction of T1/2 and Pn values from FRDM-QRPA

The formalism we use to calculate Gamow-Teller (GT) β-strength functions is fairly lengthy
since it involves adding pairing and Gamow-Teller residual interactions to the folded-Yukawa
single-particle Hamiltonian and solving the resulting Schrödinger equation in the quasi-particle
random-phase approximation (QRPA). Because this model has been completely described in
two previous papers [5, 6] we refer to those two publications for a full model specification and
for a definition of notation used. We restrict the discussion here to an overview of features that
are particularly relevant to the results discussed in this paper.

It is well known that wave functions and transition matrix elements are more affected by
small perturbations to the Hamiltonian than are the eigenvalues. When transition rates are
calculated it is therefore necessary to add residual interactions to the folded-Yukawa single-
particle Hamiltonian in addition to the pairing interaction that is included in the mass model.
Fortunately, the residual interaction may be restricted to a term specific to the particular type
of decay considered. To obtain reasonably accurate half-lives it is also very important to include
ground-state deformations. Originally the QRPA formalism was developed for and applied
only to spherical nuclei [27, 28] The extension to deformed nuclei, which is necessary in global
calculations of β-decay properties, was first described in 1984 [5]. To treat Gamow-Teller β-decay
we therefore add the Gamow-Teller force

VGT = 2χGT : β1−
· β1+ : (3)

to the folded-Yukawa single-particle Hamiltonian, after pairing has already been incorporated,
with the standard choice χGT = 23 MeV/A [5, 6, 27, 28]. Here β1±=

∑

iσit
±

i
are the Gamow-

Teller β±-transition operators.
The process of β decay occurs from an initial ground state or excited state in a mother nucleus

to a final state in the daughter nucleus. For β− decay, the final configuration is a nucleus in
some excited state or its ground state, an electron (with energy Ee), and an anti-neutrino (with
energy Eν). The decay rate wfi to one nuclear state f is

wfi =
m0c

2

h̄

Γ2

2π3
|Mfi|

2f(Z,R, ǫ0) (4)

where R is the nuclear radius and ǫ0 = E0/m0c
2, with m0 the electron mass. Moreover, |Mfi|

2

is the nuclear matrix element, which is also the β-strength function. The dimensionless constant
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Γ is defined by

Γ ≡
g

m0c2

(

m0c

h̄

)3

(5)

where g is the Gamow-Teller coupling constant. The quantity f(Z,R, ǫ0) has been extensively
discussed and tabulated elsewhere [29–31]

For the special case in which the two-neutron separation energy S2n in the daughter nucleus
is greater than Qβ, the energy released in ground-state to ground-state β decay, the probability
for β-delayed one-neutron emission, in percent, is given by

P1n = 100

∑

S1n<Ef<Qβ

wfi

∑

0<Ef<Qβ

wfi

(6)

where Ef = Qβ −E0 is the excitation energy in the daughter nucleus and S1n is the one-neutron
separation energy in the daughter nucleus. We assume that decays to energies above S1n always
lead to delayed neutron emission.

To obtain the half-life with respect to β decay one sums up the decay rates wfi to the
individual nuclear states in the allowed energy window. The half-life is then related to the total
decay rate by

Tβ =
ln2

∑

0<Ef<Qβ

wfi

(7)

The above equation may be rewritten as

Tβ =
h̄

m0c2
2π3 ln 2

Γ2

1
∑

0<Ef<Qβ

|Mfi|
2f(Z,R, ǫ0)

=
B

∑

0<Ef<Qβ

|Mfi|
2f(Z,R, ǫ0)

(8)

with

B =
h̄

m0c2
2π3 ln 2

Γ2
(9)

For the value of B corresponding to Gamow-Teller decay we use [5, 6]

B = 4131 s (10)

The energy released in ground-state to ground-state electron decay is given in terms of the
atomic mass excess M(Z,N) or the total binding energy Ebind(Z,N) by

Qβ− = M(Z,N) −M(Z + 1, N − 1) (11)

The above formulas apply to the β− decays that are of interest here. The decay Q values and
neutron separation energies Sνn are obtained from our FRDM mass model when experimental
data are unavailable [4]. The matrix elements Mfi are obtained from our QRPA model. More
details are provided elsewhere [6].

We compare here two calculations. The first is our original model as described in Ref. [6]
with the following enhancements:

1. To calculate β-decay Q-values and neutron separation energies Sνn we use experimental
ground-state masses where available, otherwise calculated masses [4]. In our previous
recent calculations we used the 1989 mass evaluation [32]; here we use the 1995 mass
evaluation [33].
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2. It is known that at higher excitation energies additional residual interactions result in
a spreading of the transition strength. In our 1997 calculation each transition goes to a
precise, well-specified energy in the daughter nucleus. This can result in very large changes
in the calculated Pn values for minute changes in, for example S1n, depending on whether
an intense, sharp transition is located just below or just above the neutron separation
energy [6]. To remove this unphysical feature we introduce an empirical spreading width
that sets in above 2 MeV. Specifically, each transition strength “spike” above 2 MeV is
transformed to a Gaussian of width

∆sw =
8.62

A0.57
(12)

This choice is equal to the error in the mass model. Thus, it accounts approximately for
the uncertainty in calculated neutron separation energies and at the same time it roughly
corresponds to the observed spreading of transition strengths in the energy range 2–10
MeV, which is the range of interest here.

3. We also base our calculations on more correct ground-state deformations which affect
the energy levels and wave-functions that are obtained in the single-particle model. The
ground-state deformations calculated in the FRDM mass model (Möller et al., 1992), gen-
erally agree with experimental observations, but in transition regions between spherical
and deformed nuclei discrepancies do occur. We therefore replace calculated deformations
with spherical shape, when experimental data so indicate. This has been done for the
following local regions:

(i) in the Fe-group seed region at the N = 40 sub-shell closure

(ii) for 31 < Z < 39, 52 < N < 60 isotopes and

(iii) for 51 < Z < 55, 84 < N < 90 nuclides.

In the second approach we account for the effect of first-forbidden strength, calculated
in the statistical gross theory [22, 23], on the decay half-lives and β-delayed neutron-emission
probabilities. Relative to the allowed Gamow-Teller strength which over a given energy range
is represented by relatively few strong peaks, the first forbidden strength with its numerous
small, densely spaced, peaks to a good approximation constitutes a “smooth background”. It is
therefore a reasonable approach to calculate the GT transitions in a microscopic QRPA approach
and the ff transitions in a macroscopic statistical model, in analogy with the macroscopic-
microscopic method in which the nuclear energy as a function of shape is calculated as a sum
of a liquid-drop-type model that varies smoothly with proton number, neutron number, and
deformation and a shell-correction part that exhibits rapid variation in these variables. Strictly
speaking f(Z,R, ǫ0) is different for allowed and first forbidden transitions. Here we use the
same f(Z,R, ǫ0) in both cases, a negligible approximation in our statistical model of the first
forbidden decays.

We show in Figs. 1–3 the effect of two of our model enhancements on the strength functions,
half-lives and delayed neutron probabilities for 99Rb, 92Rb and 137I. The top subplot shows
the original model, the middle subplot the effect of spreading the transition strength, and the
bottom subplot the effect of also including ff transitions.

The first case, 99Rb in Fig. 1, is a well deformed nucleus. In the original model there is
significant strength at low energies as is often the case in deformed nuclei. Therefore there is
for this nucleus little effect of our two model enhancements: strength spreading and inclusion
of ff transitions. In contrast, for the spherical 92Rb nucleus shown in Fig. 2 and for 137I in
Fig. 3 the effect of the two improvements is dramatic. We have chosen 92Rb as one illustrative
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β-Decay of 99Rb in 3 Successively Improved Models
(Exp.:  T1/2 = 50.3 ms   Pn = 17.3 %)
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Figure 1: Calculated β-strength functions, corresponding half-lives and delayed-neutron emission probabilities
for 99Rb in three successively enhanced models. The narrow arrow indicates the Qβ value, the wide arrows
successive neutron-separation energies; the lowest arrow S1n, the second lowest S2n, and so on. The results
are further discussed in the text.

example for two reasons. First, in the standard model calculation illustrated in the top subplot
S1n sits just below the first major peak in the strength function, with some strength, not
discernable on this plot occurring below the one-neutron separation energy. This leads to a
very high delayed-neutron emission probability, in contradiction to experiment. Second, most
of the strength occurring within the Qβ window lies just below Qβ. Therefore we obtain a half-
life in the order of hours, again in contradiction with experiment. Already after implementing
the first model enhancement, the spreading of the GT strength the agreement with experiment
improves considerably: the half-life is reduced by a factor of 6.5 and the delayed-neutron emission
probability by a factor of 20! In the next step there are even more dramatic changes in the
calculated half-life and neutron-emission probability and the agreement with experiment is now
quite good. The last case, 137I, has been chosen as a typical example in the heavy fission-peak
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β-Decay of 92Rb in 3 Successively Improved Models
(Exp.:  T1/2 = 4.49 s  Pn = 0.01 %)
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Figure 2: Calculated β-strength functions, corresponding half-lives and delayed-neutron emission probabilities
for 92Rb in three successively enhanced models. The narrow arrow indicates the Qβ value, the wide arrows
successive neutron-separation energies; the lowest arrow S1n, the second lowest S2n, and so on. The results
are further discussed in the text.

mass region where – consistently – there is no low-lying GT strength. In the initial model there
are large differences between the calculated and experimental T1/2 and Pn values. The effect
of the spreading of the GT strength is somewhat less dramatic than for 92Rb but after the ff
strength is included we again achieve good agreement with experimental data.

It is not our aim here to make a detailed analysis of each individual nucleus, but instead
to present an overview of the model performance in a calculation of a large number of β-decay
half-lives and delayed neutron-emission probabilities. In Figs. 4 and 5 we compare measured
β−-decay half-lives and β-delayed neutron-emission probabilities with calculations based on our
two models, for nuclei throughout the periodic system. To address the reliability versus distance
from stability, we present the ratio Tβ,calc/Tβ,exp versus the quantity Tβ,exp. Because the relative
error in the calculated half-lives is more sensitive to small shifts in the positions of the calculated
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β-Decay of 137I in 3 Successively Improved Models
(Exp.:  T1/2 = 24.1 s  Pn = 7.0 %)
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Figure 3: Calculated β-strength functions, corresponding half-lives and delayed-neutron emission probabilities
for 137I in three successively enhanced models. The narrow arrow indicates the Qβ value, the wide arrows
successive neutron-separation energies; the lowest arrow S1n, the second lowest S2n, and so on. The results
are further discussed in the text.

single-particle levels for decays with small energy releases, where long half-lives are expected, one
can anticipate that half-life calculations are more reliable far from stability, where the β-decay
Q-values are large, than close to β-stable nuclei.

Before we make a quantitative analysis of the agreement between calculated and experimental
half-lives we briefly discuss what conclusions can be drawn from a simple visual inspection of
Fig. 4. As functions of Tβ,exp one would expect the average error to increase as Tβ,exp increases.
This is indeed the case in both of the model calculations. When, as in the lower part of the
figure, ff transitions are included the agreement between calculations and experiment is better,
in particular for long half-lives, as expected, because for the small decay Q values here the
ff transitions are relatively more important. In addition one is left with the impression that
the errors in our calculation are fairly large. However, this is partly a fallacy, since for small
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Figure 4: Ratio of calculated to experimental β−-decay half-lives for nuclei from 16O to the heaviest known
in our previous and current models.

errors there are many more points than for large errors. This is not clearly seen in the figures,
since for small errors many points are superimposed on one another. To obtain a more exact
understanding of the error in the calculation we therefore perform a more detailed analysis.

One often analyzes the error in a calculation by studying a root-mean-square (rms) deviation,
which in this case would be

σrms
2 =

1

n

n
∑

i=1

(Tβ,exp − Tβ,calc)
2 (13)

However, such an error analysis is unsuitable here, for two reasons. First, the quantities studied
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Figure 5: Ratio of calculated to experimental β-delayed neutron-emission probabilities Pn for nuclei in the
fission-fragment region in our previous and current models.

vary by many orders of magnitude. Second, the calculated and measured quantities may differ
by orders of magnitude. We therefore study the quantity log(Tβ,calc/Tβ,exp), which is plotted
in Fig. 4, instead of (Tβ,exp − Tβ,calc)

2. We present the formalism here for the half-life, but the
formalism is also used to study the error of our calculated Pn values.

To facilitate the interpretation of the error plots we consider two hypothetical cases. As
the first example, suppose that all the points were grouped on the line Tβ,calc/Tβ,exp = 10.
It is immediately clear that an error of this type could be entirely removed by introducing a
renormalization factor, which is a common practice in the calculation of β-decay half-lives. We
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Figure 6: “Nuclear-chart” plot of the ratio of calculated to experimental β−-decay half-lives for nuclei from
16O to the heaviest known.

shall see below that in our model the half-lives corresponding to our calculated strength functions
have about zero average deviation from the calculated half-lives, so no renormalization factor is
necessary.

In another extreme, suppose half the points were located on the line Tβ,calc/Tβ,exp = 10 and
the other half on the line Tβ,calc/Tβ,exp = 0.1. In this case the average of log(Tβ,calc/Tβ,exp)
would be zero. We are therefore led to the conclusion that there are several types of errors that
are of interest to study, namely the average position of the points in Fig. 4, which is just the
average of the quantity log(Tβ,calc/Tβ,exp), and the spread of the points around this average. To
analyze the error along these ideas, we introduce the quantities

r = Tβ,calc/Tβ,exp

rl = log10(r)

Mrl = 1
n

∑n
i=1 r

i
l

M10
rl

= 10Mr
l Mean Deviation (Factor)

σrl =
[

1
n

∑n
i=1

(

ril −Mrl

)2
]1/2

σ10
rl

= 10σr
l Mean Fluctuation (Factor)

Σrl =
[

1
n

∑n
i=1

(

ril
)2
]1/2

Σ10
rl

= 10Σr
l Total Error (Factor)

(14)

where Mrl is the average position of the points and σrl is the spread around this average. When
we prefer to represent the error by a single number we use the measure Σ10

rl
for the “Total”
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Figure 7: “Nuclear-chart” plot of the ratio of calculated to experimental β−-decay half-lives for nuclei from
16O to the heaviest known. In this case first-forbidden transitions, as given by the statistical gross theory, are
taken into account.

error factor. The spread σrl can be expected to be related to uncertainties in the positions of
the levels in the underlying single-particle model. The use of a logarithm in the definition of
rl implies that these two quantities correspond directly to distances as seen by the eye in, for
example, Fig. 4, in units where one order of magnitude is 1. After the error analysis has been
carried out we want to discuss its result in terms like “on the average the calculated half-lives
are ‘a factor of two’ too long.” To be able to do this we must convert back from the logarithmic
scale. Thus, we realize that the quantities M 10

rl
and σ10

rl
are conversions back to “factor of” units

of the quantities Mrl and σrl, which are expressed in distance or logarithmic units.
We are now in a position to analyze the deviations between or calculations and experiment.

An analysis of the half-life comparisons in Fig. 4 is given in Table 1 and of the β-delayed
neutron-emission probability comparisons in Fig. 5 in Table 2. The half-life comparison shows,
as earlier [6, 7] that the mean deviation of the calculated half-lives from the experimental values is
approximately zero, that is Mrl ≈ 0. Thus, no “renormalization” of the calculated β-strength is
indicated. This is true both for the GT calculation, and in particular for the GT+ff calculation.
The large mean error for the GT calculation that is obtained when nuclei with very long half-lives
are included do not indicate a need for a general renormalization, then the same renormalization
should have been needed for nuclei with short half-lives and it is not. Rather the increase of
the mean error in the GT calculation as the half-lives become longer arises because the effect
of ff strength is not considered in the half-life calculation. When the ff strength is included
in the half-life calculation the mean deviation is always very close to zero. In addition, in the
GT+ff case the total error factor Σ10

rl
increases only very slowly when nuclei with very long half-

lives are included in the calculations. This increase is expected because when the Qβ window
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Figure 8: “Nuclear-chart” plot of the ratio of calculated to experimental β−-delayed neutron-emission prob-
abilities for nuclei in the fission-fragment region.

becomes increasingly small the calculated half-life values are more sensitive to small errors in
the calculated positions in energy of the GT transitions.

For delayed-neutron emission there is less data available than for β-decay half-lives. However,

Table 1: Analysis of the discrepancy between calculated and measured β−-decay half-lives shown in Fig. 4.

Model n Mrl M10
rl

σrl σ10
rl

Σrl Σ10
rl

Tmax
β,exp

(s)

GT 546 0.34 2.20 1.28 19.09 1.33 21.17 1000.0
GT + ff 546 -0.04 0.92 0.68 4.81 0.68 4.82 1000.0

GT 431 0.19 1.55 0.94 8.81 0.96 9.21 100.0
GT + ff 431 -0.04 0.91 0.61 4.10 0.61 4.12 100.0

GT 306 0.14 1.38 0.77 5.87 0.78 6.04 10.0
GT + ff 306 -0.03 0.93 0.55 3.52 0.55 3.53 10.0

GT 184 0.03 1.06 0.57 3.72 0.57 3.73 1.0
GT + ff 184 -0.08 0.84 0.48 3.04 0.49 3.08 1.0

GT 137 -0.01 0.97 0.55 3.53 0.55 3.53 0.5
GT + ff 137 -0.09 0.81 0.49 3.10 0.50 3.17 0.5

GT 72 -0.04 0.92 0.54 3.44 0.54 3.45 0.2
GT + ff 72 -0.10 0.80 0.50 3.19 0.51 3.25 0.2

GT 42 -0.03 0.94 0.51 3.24 0.51 3.25 0.1
GT + ff 42 -0.08 0.83 0.47 2.92 0.47 2.97 0.1
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Figure 9: “Nuclear-chart” plot of the ratio of calculated to experimental β−-delayed neutron-emission proba-
bilities for nuclei in the fission-fragment region. In this case first-forbidden transitions, as given by the statistical
gross theory, are taken into account.

the number of data points are sufficient to allow us to draw several conclusions. First, just as
for the half-lives we find that the calculations are more accurate for decays corresponding to
large Qβ values, that is far from stability where data are often not available. Large Qβ values
usually correspond to large Pn values. Second, we find also here that including ff transitions in
the simple statistical gross theory model considerably improves the calculations.

To gain further insight into the consequences of including ff transitions in our β-strength
functions we make several comparisons. In Figs. 6 and 7 we plot log(Tcalc/Texp for calculations
without and with ff strength included in “nuclear chart” form. The results without ff transitions

Table 2: Analysis of the discrepancy between calculated and measured β-delayed neutron-emission probabil-
ities Pn values shown in Fig. 5.

Model n Mrl M10
rl

σrl σ10
rl

Σrl Σ10
rl

Tmax
β,exp

(s)

GT 126 0.08 1.21 0.74 5.48 0.74 5.54 100.0
GT + ff 126 -0.11 0.78 0.54 3.44 0.55 3.52 100.0

GT 74 0.04 1.10 0.75 5.66 0.74 5.50 10.0
GT + ff 81 -0.14 0.72 0.56 3.67 0.61 4.06 10.0

GT 43 0.06 1.16 0.75 5.66 0.71 5.18 1.0
GT + ff 43 -0.14 0.73 0.65 4.45 0.71 5.17 1.0

GT 16 0.18 1.52 1.08 11.94 0.94 8.80 0.1
GT + ff 19 -0.07 0.86 0.81 6.51 0.85 7.05 0.1
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Figure 10: “Nuclear-chart” plot of the ratio of calculated β−-decay half-lives without and with first-forbidden
transitions included. Just beyond N = 50 and N = 82 there is a significant decrease of the calculated half-lives
in the r-process path when ff transitions are included.

in Fig. ?? are very clear: close to stability, and close to magic numbers the calculated half-lives
are systematically much too long. The calculated half-lives are large near magic numbers also far
from stability. This is very undesirable, the consequence will be that the calculated time for the
r-process to reach the heavy region and to reach a steady-state situation can be expected to be
too long compared to the actual duration. The reason for these deviations near β-stability and
near magic numbers were elaborated on in our discussion above of Figs. 2 and 3. Figure 7 shows
that when ff transitions are included then these systematic deviations largely dissappear. The
behavior of calculated Pn values, shown in Figs. 8 and 9 is similar. We have substantially fewer
data points here, but it is clear that some systematic deviations near β stability dissappear when
ff transitions are included. In Fig. 10 we plot the ratio of the half-lives calculated without and
with ff transitions included. As could be partly concluded already from our discussion of Figs. 6
and 7 we find big differences near β-stability and near magic numbers, in this latter case also
far from stability. The differences are particularly noticeable just beyond N = 50 and N = 82
for nuclei in the vicinity of the r-process line. Above we made the case that the enhanced model
with the ff transitions included is the more realistic one.

4 Speeding up the r-process

In order to study the effect of the new theoretical β-decay properties on r-process calculations to
reproduce the solar-system isotopic r-abundance pattern (Nr,⊙), we use an extension of the clas-
sical “waiting-point” model as outlined in detail in Refs. [2, 34]. In our present time-dependent



P. Möller, B. Pfeiffer, K.-L. Kratz /Speeding up the classical r-process . . . 18

calculations we use a superposition of 16 r-components with constant neutron densities in the
range 1020 ≤ nn[cm

−3] ≤ 3 × 1027 and a constant (freeze-out) temperature T9 = 1.35 (where
T9 is in units of 109 K) over varying process duration times τr. An instantaneous freeze-out of
the initial “unprocessed r-progenitor distribution” was assumed. However, β-delayed emission
of from one to three neutrons occurring during decay back to stability has fully been taken into
account using our recent compilation of experimental Pn values [35, 36] together with theoretical
predictions from either Ref. [7] (Pn(GT)) or the present work (Pn(GT+ff)).

Since occasionally questions arise concerning our interpretation of how in a simplified r-
process model the observed r-abundance features and nuclear-physics properties far from sta-
bility are related, we summarize our main arguments once again. Initially, based on the iden-
tification of the first two classical neutron-magic waiting-point isotopes 80Zn and 130Cd [37–39]
we have determined the nn–T9 conditions of an r-process required to form the A ≃ 80 and 130
Nr,⊙ peaks at the right position (see, e.g. Figures 4 and 12 in Ref. [2] or Fig. 4 in Ref. [40].
Soon after, Takahashi et al. [41] have performed fully-dynamic r-process nucleosynthesis calcu-
lations within the realistic neutrino-wind model of a core-collapse supernova of type II (SN II).
One of their promising results was that their time-varying trajectories of neutron densities (or
entropies) and temperatures towards freeze-out were exactly lying within our predicted nn–T9

band, thus proving the principal validity of our simple and elegant approximation.
The other issues addressed in detail following the above initial results were (i) what additional

effects can enter in the “early” phases of an r-process (prior to freeze-out), and (ii) how can an
astrophysically realistic treatment of a freeze-out alter the obtained r-abundance distribution. A
summary of these discussions is given in the paper of Freiburghaus et al. [42]. It was agreed that,
while heavy-element production in a realistic astrophysical scenario may well be fast in the very
early phase with a r-process path close to the neutron drip-line, it is the final freeze-out with a
path closer to β-stability (but still 15 to 35 mass-units away from it) that leaves its fingerprint in
the observed Nr,⊙ pattern. Thus, at freeze-out the r-process seems to have “forgotten” his early
history, and nuclear-structure effects of nuclei with Sn ≃ 1.5–3 MeV — in particular at the magic
neutron shells — determine the final picture. With respect to a realistic treatment of the freeze-
out, several effects have been discussed, such as non-equilibrium captures of remaining seed
neutrons and their inverse photo-disintegrations, re-capture of neutrons emitted after β-decay,
and neutrino reactions. Detailed freeze-out tests have, however, shown that these effects do not
affect the medium-heavy nuclei up to the A ≃ 130 Nr,⊙ peak significantly. But – somewhat
depending on the specific astrophysical model – they may be important for the heavier nuclides
in the rare-earth and the A ≃ 195 Nr,⊙ regions, although not changing the overall gross picture.

In summary, we can conclude that despite the above details, our admittedly rather simple
and site-independent multicomponent model is a valuable approximation to the still favorably
discussed realistic neutrino-wind scenario of a core-collapse SN II, well emulating the conditions
just before and at freeze-out. Therefore, the waiting-point approximation has remained an
important test-bed for systematic parameter studies of various nuclear data sets for masses and
β-decay properties [34, 43–46].

In the context of this paper, the β-decay half-lives of the r-process progenitor isotopes are of
major importance since they define to a large extent the time behavior of the r-process matter
flow from the seed region (here assumed to be Fe) up to the Th, U and the A ≥ 250 fission
region. Thus, the half-lives determine the total duration of an r-process. In particular the rapidly
expanding high-entropy bubble of the neutrino-wind SN II scenario would require a rather short
r-process time scale of the order of 1 s. Under typical freeze-out conditions (T9 ≃ 1.35 is chosen
here) and with an Fe-group seed, this can only be achieved with “short” T1/2. This is particularly
the case for the classical N = 50, 82 and 126 waiting-point nuclei where the r-process “climbs
a staircase with Z and A both increasing by unity after each step” when plotted versus mass
number A [1], or it climbs a ladder at the magic shell when plotting versus neutron number
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Table 3: Comparison of β-decay half-lives of neutron-magic N = 50, 82 and 126 r-process waiting-point
nuclei from different tabulations. In column 2, we list the theoretical T1/2 values for pure GT-decay [7].
Column 3 summarizes the corresponding values from our new T1/2(GT+ff) calculations. And in column 4,
we give our experimental values together with the (steadily updated) T1/2 evaluation [35, 36] which we have
used so far in most of our r-process calculations since the early 1990’s [2].

Waiting-point Beta-decay half-life [ms]
Isotope T1/2(GT) T1/2(GT+ff) T1/2(eval)

76Fe 44.6 27.2 13.2
77Co 13.4 13.7 9.8
78Ni 477.1 224.4 210.0
79Cu 430.3 156.8 188 ∗)
80Zn 3068 1260 540 ∗)
81Ga 1568 1227 1222 ∗)
125Tc 9.1 8.9 7.5
126Ru 34.2 29.7 16.6
127Rh 22.0 20.4 69.7
128Pd 125.1 74.2 115.0
129Ag 47.0 31.7 46 ∗)
130Cd 1123.1 502.3 168 ∗)
131In 147.1 139.2 278 ∗)
190Gd 14.2 9.4 15.8
191Tb 15.9 10.2 13.8
192Dy 31.6 19.7 30.0
193Ho 27.7 17.7 20.4
194Er 87.1 50.2 95.8
195Tm 67.3 42.0 90.4
196Yb 396.6 181.2 222.0

∗) experimental value

N [47, 48]. At these magic neutron numbers, the r-process isotopes have the longest half-lives
(the most important ones at N ≃ 50 and 82 have now been determined experimentally, cf.
Refs. [19, 34, 37–39, 46, 49–51]. Thus, they form the major bottle necks for the r-matter flow at
the rising wings of the Nr,⊙ peaks at A ≃ 80, 130 and 195.

Table 3 compares the T1/2(GT) [7] with our new T1/2(GT+ff) and with the (steadily updated)
T1/2 evaluation [35, 36] used in most of our r-process nucleosynthesis calculations since the early
1990’s [2]. More than 40 years ago B2FH [1] and Coryell [52] suggested that the sum of the
half-lives of all r-process isotopes between Fe and the heaviest species in the Th, U region
(in particular the “long” ones of the neutron-magic waiting-point nuclei at N = 50, 82 and
126) will yield a rough estimate of the total duration of an r-process (τr). When we follow
this prescription it immediately becomes evident that our improved macroscopic-microscopic
T1/2(GT+ff) predictions, together with the known experimental data, will speed up the classical
r-process considerably. Within this picture, clearly the N = 50 shell closure represents the
strongest bottle-neck for the r-matter flow due to the rather long half-lives of 80Zn and 81Ga.
Based on the theoretical T1/2(GT) from Ref. [7], an r-process would need about 5.6 s to pass the
N = 50 shell. With our new T1/2(GT+ff) values this time would already be reduced to 2.9 s.
When we take into account the measured half-lives for 79Cu, 80Zn and 81Ga, the time duration
further reduces to 1.2 s. Similarly, but not as strongly halted as at N = 50, the N = 82 shell
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would be overcome within 1.5 s when using the T1/2(GT) half-lives, speeded up to 0.8 s with the
new T1/2(GT+ff) half-lives, and reduced further to about 0.6 s when the experimental half-lives
for 129Ag, 130Cd and 131In are used. The waiting-point effect is somewhat less pronounced for
the N = 126 shell, where no experimental data are now available nor can be expected to be
available in the near future. When we sum up the theoretical half-lives of the neutron-magic
r-process nuclei between 190Gd and 196Yb, the use of our T1/2 evaluation [35, 36] yields a value
of 0.49 s, to be compared to 0.64 s for the T1/2(GT) from [7] and 0.33 s for the new T1/2(GT+ff).
In summary, most of the time needed for an r-process is to overcome the N = 50 and N = 82
bottle-neck regions, whereas the N=126 shell is passed relatively quickly. As soon as the r-process
succeeds to break out of the magic neutron shells at 81Ga, 131In and 196Yb, respectively, the
matter flow will accelerate in the regions in between the abundance peaks and beyond A ≃ 200.
In these regions mainly very short-lived deformed r-process progenitors are involved. For these
the earlier T1/2(GT) [7] are quite similar to our new T1/2(GT+ff) predictions.

Today we know, however, that the initial picture of B2FH [1] of summing-up the T1/2 of
the waiting-point nuclei of all three magic shells N = 50, 82 and 126 is too simplistic, and
in fact not quite correct. Since the early 1990’s, at the latest, when the first experimental
information about the r-process isotopes 80Zn and 130Cd became available, it is definitely clear
that the formation of the threeNr,⊙ peaks requires different neutron-density conditions, implying
different r-process paths at different distances from β-stability [2, 43, 48]. To be more specific,
under the astrophysical nn–τr conditions where the A ≃ 80 peak is produced at relatively “low”
nn, the A ≃ 130 peak will barely be formed and definitely not the A ≃ 195 peak, unless “higher”
nn densities are invoked. Similarly, for nn–τr conditions where the A ≃ 130 peak is produced at
“medium” nn densities (see, e.g. Fig. 11 of this paper), the A ≃ 80 region has already been partly
depleted, and the A ≃ 195 peak only starts to fill up. Hence, at least three nn-components are
required with - consequently - shorter process durations τr to model the respective mass regions.
This is demonstrated, in, for example, Figures 3 and 5 of Ref. [38]. Even within each series
of neutron-magic isotones, the respective r-process isotopes act as waiting-points for different
nn-ranges.

Let us have a closer look into the situation at the 2nd Nr,⊙ peak involving the N = 82
waiting-point nuclei 127Rh to 131In. For nn ≃ 2 × 1022 [cm−3] the r-process breaks out of the
magic shell at 131In. Under these conditions, the N = 50 isotopes 77Co to 79Cu would still lie in
the r-process path; but above Z = 29 the waiting-point nuclei would be N = 52 82Zn and N = 84
85Ga. In terms of the τr of this r-component, this means that the matter flow avoids the two
relatively “long-lived” waiting points 80Zn (T1/2 = 540 ms) and 81Ga (T1/2 = 1.2 s) and speeds
up through the above ”shorter-lived” r-process nuclei with T1/2(GT + ff) = 275 ms and 268 ms,
respectively. At nn ≃ 5×1023 [cm−3] the r-process breaks out of N = 82 already in the Cd chain,
thus avoiding the 168-ms 130Cd in favor of 97-ms 132Cd. Analogously, below Z = 48 129Ag acts
as a neutron-magic waiting-point nucleus up to nn ≃ 5× 1024 [cm−3] (with 132Cd and 135In for
Z = 48 and 49), 128Pd up to nn ≃ 1026 [cm−3] (now with 131Ag, 134Cd and 137In above Z = 46)
and 127Rh up to nn ≃ 3×1027 [cm−3] (with 130Pd, 133Ag, 136Cd and 139In above Z = 45). Under
the latter nn-conditions, already the 3rd Nr,⊙ peak at A ≃ 195 is formed. Break-out from the
N = 126 shell closure at 195Tm occurs at nn ≃ 2 × 1027. At such high neutron densities, the
r-process would already break out of the N = 50 shell at Z = 28 (thus ”saving” nearly 2 s at
the A ≃ 80 bottle-neck; see Table 3), and out of the N = 82 shell at Z = 128 (thus ”saving”
another 500 ms at the A ≃ 130 bottle-neck). All these above considerations about the r-process
paths and the corresponding τr are, however, still based on simple static calculations using the
nuclear Saha equation. A more realistic picture will, therefore, only be obtained through time-
dependent r-process calculations. Therefore, our next step will be to investigate the r-process
matter flow in a dynamic model with the classical (n,γ)⇀↽ (γ,n) equilibrium assumption (see,
e.g. Refs. [2, 34]).
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FRDM; T1/2 and Pn from MNK (1997) 
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Figure 11: Comparison of calculated r-abundance nn–τr components which mainly build the A≃130 Nr,⊙

peak at a freeze-out temperature of T9 = 1.35, using exclusively theoretical T1/2(GT) and Pn(GT) values
from Ref. [7] (left part) with our new T1/2(GT+ff) and Pn(GT+ff) predictions (right part). In all calculations,
nuclear masses were used from the Audi evaluation [33] or from the FRDM model [4]. It is clearly evident from
this comparison, that – within the same process times τr = 2.00 s for the upper figures and τr = 2.15 s – the
shorter T1/2(GT+ff) result in a faster r-matter flow at the N = 82 bottle-neck region, thus producing already
considerably higher r-abundances of rare-earth elements than with the use of the older T1/2(GT) values. For
more details, see text.

To show the situation in more detail, Fig. 11 compares snapshots of time-dependent r-
abundance calculations for a range of astrophysical conditions (with identical T 9, nn and τr,
respectively) under which the second Nr,⊙ peak at A ≃ 130 is formed. Together with the
neutron separation energies from the FRDM mass model [4], the T1/2 and Pn values become the
decisive nuclear quantities in these calculations. And, as is clearly evident from the figure, with
our new, ”shorter” T1/2(GT+ff) at the same process time considerably more r-material has been
built up beyond the peak in the rare-earth region than with our old, “longer” T1/2(GT).

Finally, Fig. 12 shows the development of the r-abundances of the important waiting-point
isotopes 80Zn (N = 50), 130Cd (N = 82) and 195Tm (N=126) as a function of neutron density
nn and process duration τr, respectively. These three nuclei form the respective top of the
three Nr,⊙ peaks at freeze-out prior β-decay back to stability. Again, one observes that the
new macroscopic-microscopic T1/2(GT+ff) predictions result in a speeding-up of the r-process
compared to the earlier half-lives for pure GT-decay [7]. With this, the total duration for a robust
r-process nucleosynthesis up to Th, U is reduced to about 4 s. This is slightly more than the
time scale we had obtained already 10 years ago with our T1/2 and Pn evaluation [35, 36], which
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Figure 12: The build-up of the initial r-abundances Nr,prog of the three neutron-magic waiting-point nuclides
80Zn50,

130Cd82 and 195Tm126 from an Fe-seed as a function of neutron density nn and process duration τr
at freeze-out temperature T9 = 1.35. The above three isotopes are the direct progenitors of the stable isobars
80Se, 130Te and 195Pt situated at the top of the respective Nr,⊙ peaks. Their build-up contains the full
time-history of the r-process “climbing up” the respective magic neutron shells at N = 50, 82 and 126.
Furthermore, in the formation of the 2nd and 3rd Nr,⊙ peaks, a kind of “memory effect” of the history of
the r-matter flow at the earlier r-peak(s) is maintained. The upper part shows the calculations using the
β-decay half-lives T1/2(GT) obtained from the QRPA model for GT-decay only [6]. The lower part exhibits
the respective calculations using our new, shorter theoretical T1/2(GT+ff) values which include both GT-decay
(from the QRPA model) and ff-decay (from the “gross theory” [23]). In all calculations, nuclear masses have
consistently been taken from the most recent Audi evaluation [33] and from the FRDM model [4].

included experimental data and local nuclear-structure related improvements in the theoretical
calculations of β-decay properties, as outlined e.g. in Ref. [2].

In this paper, we have for consistency reasons based all our calculations on the FRDM mass
model [4], in which neutron-shell corrections in the vicinity of magic neutron numbers far from
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stability, in particularly in the waiting-point regions, are sometimes as strong as the experimen-
tally known ones in the valley of β-stability. This model currently presents the most well-tested
and most unified prescription for obtaining unknown nuclear properties far from stability, with
the best, proven track record of reliability for a large number of nuclear-structure properties,
when calculated quantities are compared to new data as they become available [7]. However, it
is informative to investigate the consequences of slightly more speculative assumptions. Recent
experimental evidence is often interpreted to indicate that a gradual shell weakening (“quench-
ing”) of the classical shell gaps with distance from stability — already well known for N = 20
and N = 28 — also seems to occur at N = 50 and N = 82. For recent reviews, see for example
Refs. [34, 46]. Such a weakening of the shell effects may further speed up the classical r-process
even at moderate neutron densities. In a calculation based on, for example, the microscopic
Hartree-Fock-Bogolyubov (HFB) method with the specific Skyrme force SkP of Dobaczewski et
al. [53, 54], which exhibits a rather strong shell quenching, a robust r-process from the classical
Fe seed up to the full 3rd Nr,⊙ peak can be run within about 1.5 s with a maximum neutron
density of only nn ≃ 1023[cm−3] (see, e.g. Fig. 3 in Ref. [43] or Fig. 4 in Ref. [46]. However, in
for example the neutrino-wind SN II scenario, the rapid-neutron-capture process starts from an
A ≃ 90 seed composition, and consequently it avoids the dominant N = 50 bottle-neck in the
r-matter flow. In this scenario, with a calculation based on the “quenched-shell” assumption,
the total duration of an r-process at freeze-out can be further reduced to about 850 ms.

It will presumably not be a problem to obtain short half-lives of r-process progenitor nuclei
and corresponding short time-scales to build up heavy elements in low-entropy environments
which are very neutron-rich, such as neutron-star (NS) mergers [55–57] but it is still a difficult
problem to realize short progenitor half-lives in high-entropy environments with (only) moderate
neutron densities, such as SN II scenarios. As shown, by for example Refs. [42, 58], rather
high entropies up to 400 kB/nucleon are required to produce the full 3rd Nr,⊙ peak at A ≃
195. Such high densities are considerably beyond what is achieved in realistic hydrodynamic
approaches [41, 59]. However, if shell quenching at N = 50 and 82 would definitely be confirmed
by future experiments, the above maximum neutron density of roughly 1023[cm−3] – which
would correspond to a maximum entropy of about 150 kB/nucleon – together with an r-process
timescale of the order of 1 s might help to solve at least some of the still existing problems
encountered in the high-entropy neutrino-wind SN II scenario.

A sentence added: Even if time-scales should turn out to be of minor importance in realistic
r-process nucleosynthesis scenarios, we prefer to use the best possible (experimental and consis-
tently calculated microscopic) nuclear-data input in our calculations, rather than compensating
obvious nuclear-physics deficiencies by “optimizing” simultaneously several (not so well defined)
astrophysical quantities as “free parameters”.

5 Summary and conclusions

We have combined our microscopic QRPA model of allowed Gamow-Teller β decay with the
statistical gross theory of first-forbidden decay. Experimental data show that the first-forbidden
strength over a given energy range is represented by numerous densely spaced peaks whereas the
allowed GT strength is concentrated in a few strong peaks. Our new “microscopic-macroscopic”
model of β decay is therefore a reasonable approximation in analogy with the microscopic-
macroscopic model of nuclear potential-energy surfaces. It is also the, at the moment, only
tractable way to calculate globally the required nuclear-structure and decay properties in a model
that represents a unified model across the entire nuclear chart and that has a proven track record
of reliability when it is applied far from known regions of nuclei where the model parameters were
determined [4, 7]. We have tested our approach by comparing the new model and old model, the
latter without first-forbidden decays taken into account, to data throughout the periodic system.
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These comparisons demonstrated that our enhanced model leads to a substantial improvement in
calculated β-decay half-lives and β-delayed neutron-emission probabilities. This is particularly
true near magic neutron numbers where the r-process “spends most of its time.”

The new T1/2(GT+ff) and Pn(GT+ff) values have been applied to site-independent r-process
calculations. Calculations based on the new data base result in a considerable speeding-up of
the r-matter flow in the vicinity of the Nr,⊙ peaks, which are related to magic neutron-shell
closures, relative to calculations based on the previous T1/2(GT) and Pn(GT) tabulation.

Clearly, still more work is needed in both experimental and theoretical nuclear physics as well
as in astrophysics to finally solve the problem of the “origin of the heavy elements between Fe and
Th, U” which has recently been considered number three among “The 11 Greatest Unanswered
Questions in Physics” [60].
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(1994) 419.

[50] K.-L. Kratz, T. Kautzsch, M. Hannawald, W. Böhmer, I. Klöckl, P. Möller, and B. Pfeiffer,
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