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Abstract: We calculate complete fission potential-energy surfaces for five
shape coordinates: elongation, neck diameter, light-fragment deforma-
tion, heavy-fragment deformation, and mass asymmetry for even nuclei
in the range 82 ≤ Z ≤ 100. The potential energy is calculated in terms of
the macroscopic-microscopic model with a folded-Yukawa single-particle
potential and a Yukawa-plus-exponential macroscopic model in the three-
quadratic-surface parameterization. The structure of the calculated energy
landscapes includes multiple valleys leading to different scission configura-
tions. The properties of these valleys and the saddle-points leading into
these valleys can be directly related to bimodal fission properties observed
in the radium region, in the light-actinide region, and in the fermium re-
gion [1–4]. The light-actinide region has been extensively studied here in
Japan [2,3].

1 Introduction

When a heavy nucleus divides into two fragments in nuclear fission, two key aspects of the
process have challenged researchers since the discovery of fission more that 60 years ago.
First, what is the threshold energy for the reaction and, second, what are the shapes involved
in the transition from a single nuclear system to two separated daughter fragment nuclei?
These two questions are intimately connected. The energy of a nucleus as a function of
shape defines a landscape in a multi-dimensional deformation space. It is the energy of the
the lowest mountain pass, or saddle-point, in this landscape, connecting the nuclear ground
state with the region corresponding to separated fragments that represents the threshold
energy of the fission process.

After the discovery of fission in 1938 by Hahn and Strassmann [5] the phenomenon
was almost immediately explained by Meitner and Frisch [6] and by Bohr and Wheeler
[7] in terms of a model involving a charged liquid drop with a surface tension. One can
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then show that when the atomic number increases, the drop becomes increasingly unstable
with respect to deformation and at proton number Z ≈ 100 stability is completely lost.
For slightly lower-Z actinide nuclei the fission barrier between the ground-state shape and
the separated-fragment configuration is sufficiently small that spontaneous fission, due to
quantum-mechanical penetration of the fission barrier, occurs with measurable probability.
Fission may also be induced by exciting the nucleus to energies above the barrier energy.
In some cases, such as n+235U, thermal neutron capture yields sufficient energy to excite
the nucleus above the barrier.

In a pioneering use of the first electronic digital computer ENIAC, Frankel and Metropo-
lis [8] in 1947 explored some key aspects of the liquid-drop model potential-energy landscape.
In particular, they determined the shapes of nuclei at the saddle-point threshold energies
in the macroscopic model they investigated. However, no macroscopic model such as the
liquid-drop model of nuclear fission is able to explain certain features of fission-fragment
mass and kinetic-energy distributions. For example:

1. Nuclei near 228Ra exhibit two fission modes. We show as Figs. 1 and 2 examples of the
extensive data obtained in reference [1]. In one mode, with the lower threshold energy,
the fragment mass distribution is asymmetric and the fragment total kinetic energy
is about 10 MeV higher than in the other, symmetric mode. The kinetic energies
indicate that the scission configuration is more compact for the asymmetric mode
than for the symmetric mode. From the totality of the data Ref. [1] concludes: “Thus
it seems that after the gross determination of the symmetric or asymmetric character
of fission made already at the barrier, the two components follow a different path with
no or little overlap in the development from the barrier to the scission configuration.”

2. Most actinide nuclei near the line of β-stability undergo mass-asymmetric fission. The
heavy fragment mass is close to 140 from Th to Fm, with the remainder of the mass
in the light fission fragment.

3. Also, near the far end of the actinide region fission properties change suddenly and
sometimes exhibit a two-mode character in the same nucleus. For example the frag-
ment mass distribution changes suddenly from mass-asymmetric for 256Fm to sym-
metric for 258Fm and there is a sudden, correlated increase in the fragment kinetic
energies by 35 MeV. Examples of fission-fragment total kinetic-energy distributions
and mass distributions are shown in Fig. 3.

In the 1960s an improved model for the nuclear potential energy as a function of shape
emerged. In this macroscopic-microscopic model, the potential energy is the sum of shape-
dependent liquid-drop and microscopic terms. Over the past 30 years this model has pro-
vided considerable insight on nuclear structure. For example nuclear masses are calcu-
lated for nuclei throughout the periodic system to an average accuracy of about 0.7 MeV.
Improved descriptions of the fission barrier, for example fission-isomeric states and mass-
asymmetric fission saddle points were obtained in this model.

However, since the spurt of insights in the early 1970s no major improvement in the
description of the fission potential-energy landscape has been obtained. Many calculations
based on 1000 or so grid points have been presented. But, to properly describe the evolution
of a single nuclear shape into two fragments1 of different mass and deformation, for example

1At the present time we do not treat the approximately one in five hundred fissions that are ternary in

the actinide region.
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Figure 1: Fission probability data show different thresholds for mass-asymmetric and mass-symmetric
fission near Ra. The figure is based on a figure in Ref. [1].

one spherical 132Sn-like fragment and one deformed fragment with mass number A near 100,
at least five independent shape parameters are required. We have here constructed, calcu-
lated, and investigated such a five-dimensional space with 2 610 885 grid-points. Specifically,
the five shape coordinates are: (1) charge quadrupole moment, (2) neck diameter, (3) left
nascent-fragment deformation, (4) right nascent-fragment deformation, and (5) mass asym-
metry. Our potential-energy model is the macroscopic-microscopic finite-range liquid-drop
model as defined in Ref. [9] with shape-dependent Wigner and A0 terms as defined in Ref.
[10].

To illustrate the many new features and strengths of our current approach we comment
briefly on some aspects of fission potential-energy-surface calculations over the previous 30
years. We then introduce our current model and present some results of our studies of
complete five-dimensional potential-energy surfaces.

2 Two-Dimensional Potential-Energy Surfaces

When attending the fission workshop in Kumatori in 1992, I discussed at some length fission
in the Fm region. Here, I will briefly recapitulate some of this discussion since it provides a

useful background to our new approach. In these previous studies the potential energy was
calculated in a two-dimensional deformation space. Some typical shapes in this space are
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Figure 2: The mass-symmetric and mass-asymmetric fission modes are associated with different average
total kinetic energies. The figure is based on a figure in Ref. [1]. The lines are least-squares fits to the
data.

shown in Fig. 4. The results obtained for 258Fm are shown in terms of a contour diagram
in Fig. 5.

For a long time experimental studies of spontaneous-fission properties in the actinide
region showed gradual, predictable changes of such properties as spontaneous-fission half-
lives and mass and kinetic-energy distributions as the region of known nuclei above uranium
expanded. However, in the 1970s evidence started to accumulate that there were rapid
changes in fission properties in the heavy-fermium region. The first observation of the onset
of symmetric fission at the end of the periodic system was a study [12] of 257Fm fission.
As mentioned earlier, for 258Fm the changes are even more dramatic. Fission becomes
symmetric with a very narrow mass distribution, the total kinetic energy of the fragments
is about 35 MeV higher than in the asymmetric fission of256Fm, and the spontaneous-fission
half-life is 0.38 ms, compared to 2.86 h for 256Fm. The fission-fragment mass distributions
and kinetic-energy distributions of 258Fm and four other heavy nuclei are shown in Fig. 3,
taken from Ref. [4]. An important feature of some of the kinetic-energy distributions is that
the shape is not Gaussian. Instead, some of the distributions are best described as a sum of
two Gaussians. In 258Fm, for example, the kinetic-energy distribution can be represented
by two Gaussians centered at about 200 and 235 MeV. This type of fission is referred to as
bimodal fission.

It has been proposed in Ref. [13] that the rapid change in half-life when going from256Fm
to 258Fm is due to the disappearance of the second saddle in the barrier below the ground-
state energy. Fission through only one barrier, the first or inner barrier, gives very good
agreement with the observed short half-life of 258Fm [13,14]. However, one may ask if and
how the spontaneous-fission half-life is connected to the change in other fission properties at
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Figure 3: Experimental fission-fragment mass and kinetic-energy distributions for the fission of nuclei
close to Fm, whose symmetric fragments are doubly magic. The structures of these distributions
reflect the valleys, ridges, minima, and saddle points of the underlying nuclear potential-energy surfaces.
Taken from Ref. [4].

this transition point, such as the change to symmetric fission and high kinetic energies. We
have shown that the old interpretation that the barrier of258Fm has disappeared below the
ground state is inconsistent with results from the earlier two-dimensional calculation [10,15]
and we have proposed a new mechanism for the short half-life. This previous interpretation
is confirmed by our current study.

Although theoretical considerations had far earlier led to suggestions of several fission
paths in the potential-energy surface, theoretical spontaneous-fission half-life calculations
until rather recently considered only shape parameterizations that allowed for the con-
ventional valley [16–21]. Early calculations that showed, to some extent, the influence of
fragment shells at various stages of the fission process, before scission, appeared in the
early-to-mid-1970’s [22–24].

The first calculation that showed pronounced multi-valley structure and predicted the
corresponding spontaneous-fission half-lives was performed in Refs. [15,25]. An improved
model that also included odd nuclei followed [10]. We show some results from these cal-
culations in Figs. 4 and 5 in units where the radius R0 of the spherical nucleus is unity.
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Figure 4: Typical nuclear shapes for which fission potential-energy surfaces are calculated. The selected
shapes allow fission into both compact spherical fragments with high kinetic energies and elongated
fragments with normal kinetic energies.

These [10,15] showed that some of the good agreement between calculated spontaneous-
fission half-lives and measured values obtained in earlier calculations [14,18] for nuclei close
to 258Fm was fortuitous.

The high-kinetic-energy fragments in heavy Fm fission were thought to correspond to
fission through a scission configuration of two touching spherical fragments, and low-kinetic-
energy fission was interpreted as fission through a scission configuration of two elongated
fragments. Figure 4 shows a set of shapes that leads from a deformed ground state to both
of these scission configurations, and Fig. 5 shows the corresponding calculated potential-
energy surface. The three paths are described in the caption to Fig. 5.

3 Common Fallacies in Exploring Multi-Dimensional Fission

Potential-Energy Surfaces

Although the results displayed in Figs. 4 and 5 of the previous Section show two fission
valleys as was inferred from the experimental data, a severe limitation of the calculation
is that only two deformation parameters were included in the study. Only the elongation
and neck parameters were varied while the mass asymmetry was kept fixed and the nascent
fragment shapes were kept spherical. One asks if the valleys would still appear if these
constraints were relaxed. So called “multi-dimensional” calculations have tried to address
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Figure 5: Calculated potential-energy surface for Fm, showing three paths to fission. Initially, only
one path starting at the ground state exists. Later this path divides into two paths, one leading to
compact scission shapes in the lower part of the figure and the other leading to elongated shapes in
the upper part of the figure. At a late stage in the barrier-penetration process, a third “switchback
path” branches off from the path leading to compact shapes and leads back into the valley of elongated
scission shapes. Because this takes place late in the barrier-penetration process, the fission probabilities
for fission into compact and elongated shapes are expected to be roughly comparable. Experimentally
the probabilities differ by only one order of magnitude. The inertia associated with fission into the lower
valley is considerably smaller than the inertia for fission into the upper valley. This calculation is from
Ref. [11].

this issue, but most such calculations have been severely flawed.
It is a common misconception that the structure of a multi-dimensional potential-energy

function can be determined by calculating and displaying the potential-energy function
versus two shape variables, for example, β2 and β4 [26] or β2 and β3 [27,28], where the
potential-energy function has been “minimized” with respect to additional multipoles such
as β4, β5, β6 and β7, or even more multipoles in, for example, Ref. [29]. In fact, such a
procedure will yield fictitious saddle points that are either higher or lower than the correct
saddle points and with corresponding shapes that are different from the shapes obtained
in a correct treatment of the multi-dimensional problem. In Ref. [30] it is shown that
a “minimization” procedure does not even work in the simple case of obtaining a one-
dimensional fission barrier from a two-dimensional macroscopic potential-energy surface.
We show in Fig. 6 the surface used as an example in Ref. [30].

The structure of a two-dimensional macroscopic potential-energy function is very much
simpler than a higher-dimensionalmacroscopic-microscopic potential-energy function. There-
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Figure 6: Two-dimensional schematic but realistic surface for which “minimizations” or constrained
calculations fail. Blue and cyan colors in the figure represent the lowest energies. The parameter Θ could
represent an elongation coordinate in the fission direction and α could represent all other coordinates.
The solid line represents valleys and ridges in the surface. If the energy is minimized with respect to α for
various fixed elongations, starting on the left side of the plot then initially the upper valley will be followed
if, for each successive Θ, the previous value of α is used as a starting coordinate in the minimizations.
Towards the right of the figure the upper valley disappears and a discontinuous jump in energy would be
obtained when the lower valley floor is obtained as a minimum. This is a typical situation in constrained
Hartree-Fock fission calculations. The true saddle point is located in the center of the figure. Similar
difficulties occur when a potential-energy function is minimized with respect to higher multipoles and
displayed as a function of β and β. The structure of the two-dimensional contour plot would have little
connection to the full multi-dimensional function. The mathematical representation of this surface was
given in Ref. [30].

fore a reduction to a two-dimensional potential-energy surface through a minimization pro-
cedure is not a proper method for obtaining the true saddle points of the original multi-
dimensional potential-energy surface. Furthermore, the calculations [26–29] do not account
for the shape dependence of the Wigner term as we do here. It is crucial to include such a
shape dependence in studies that consider the shape evolution from a single shape to two
emerging fragments [10,11,31]. In addition, Refs. [27,28] have without any stated motiva-
tion used an inappropriate value a = 0.56 fm for the range of the Yukawa-plus-exponential
function instead of the standard value a = 0.68 fm [32]. The value a = 0.68 fm has been
determined from adjustments to fusion barrier heights and cannot be arbitrarily changed,
because then the agreement between calculated and experimental fusion-barrier heights is
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lost. Since saddle-point and scission configurations are close to the shape configuration
corresponding to the fusion-barrier peak it is crucial not to lose this agreement.

It is also a common misconception that constrained self-consistent calculations, for ex-
ample HF or HFB calculations with Skyrme or Gogny forces [33–35] automatically take into
account all non-constrained variables. For the application of saddle-point determination this
is incorrect, as we discuss below, and as is very pedagogically explained in Ref. [30]. For one
constraint, typically the mass quadrupole moment Q2, such calculations result in several
curves [34], depending on the initial shape at which the calculation is started. These curves
may intersect at a cusp. One curve may correspond to a single shape (the fission valley)
and another to separated fragments (the fusion valley). The cusp at which these curves
intersect is normally considerably lower than the true saddle point [30]. The true saddle
point is somewhere in the multi-dimensional space between the fusion and fission valley.
Also, when two constraints are used in self-consistent calculations, such as quadrupole and
octupole constraints in Ref. [35], two or more solutions, or sheets, are obtained. Again,
the true saddle point lies somewhere in the multi-dimensional space between these sheets.
Therefore, several more carefully selected constraints need to be introduced to accurately
locate the saddle points.

It is also of interest to note that in calculations where the potential energy is displayed
as contour diagrams versus two shape variables and in which the energy is minimized with
respect to additional multipoles, only relatively few points are required to perform a mini-
mization with respect to, say, 3 additional multipoles, about 30 or so. If the two-dimensional
contour diagram is based on 10 by 10 points then only 3 000 points are considered in the
calculation. In contrast, we consider here for five simultaneous shape-degrees of freedom
almost 3 000 000 grid points, that is 1000 times more points than earlier calculations pur-
porting to be multi-dimensional.

4 Five-Dimensional Deformation Space

From the above discussion it is clear that to correctly determine the structure of a multi-
dimensional fission potential-energy function it is necessary to calculate a complete hyper-
cube or hypervolume in the multi-dimensional space. Because nascent-fragment shell effects
strongly influence the structure of the fission potential-energy surface long before scission,
usually already in the outer saddle region, it is crucial to include in calculations the nascent-
fragment deformations as two independent shape degrees of freedom. In addition, elonga-
tion, neck diameter, and mass-asymmetry shape-degrees of freedom are a minimum required
to adequately describe the complete fission potential-energy surface. For nascent-fragment
deformations we choose spheroidal deformations characterized by Nilsson’s quadrupole ǫ pa-
rameter. This single fragment-deformation parameter is sufficient because higher-multipole
shape-degrees of freedom are usually of lesser importance in the fission-fragment mass region
below the rare-earths.

The three-quadratic-surface parameterization is ideally suited for the above description.
In this parameterization the shape of the nuclear surface is specified in terms of three
smoothly joined portions of quadratic surfaces of revolution. They are completely specified
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[36] by

ρ2 =
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(1)

Here the left-hand surface is denoted by the subscript 1, the right-hand one by 2 and the
middle one by 3. At the left and right intersections of the middle surface with the end
surfaces the value of z is z1 and z2, respectively. Surfaces 1 and 2 are also referred to as end
bodies and, alternatively, nascent fragments below. They are indicated in red in Fig. 7.

There are nine numbers required to specify the expressions in Eq. (1) but the conditions
of constancy of the volume and continuous first derivatives at z1 and z2 eliminate three
numbers. The introduction of an auxiliary unit of distance u through

u =

[

1

2

(

a1
2 + a2

2
)

]
1
2

(2)

permits a natural definition of two sets of shape coordinates. We define three symmetric
coordinates σi and three mass-asymmetric coordinates αi by

σ1 =
(l2 − l1)

u

σ2 =
a3

2

c32

σ3 =
1

2

(

a1
2

c12
+

a2
2

c22

)

α1 =
1
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(l1 + l2)

u

α2 =
(a1

2 − a2
2)

u2

and

α3 =
a1

2

c12
−

a2
2

c22
(3)

The coordinate α1 is not varied freely but is determined by the requirement that the center
of mass be at the origin.

When a grid of deformation points is selected in the three-quadratic-surface parameter-
ization, a substantial practical problem is that not all values of the deformation parameters
correspond to a physical shape. Another complication is that some of the shape-parameters
above are rather indirectly related to more familiar quantities associated with nuclear shape.
To generate a reasonable deformation grid in the three-quadratic-surface parameterization
we therefore select the input deformations by starting from more familiar concepts.



P. Möller, A. Iwamoto, and D. G. Madland/Structure of Fission Potential-Energy . . . 11

Q2

41 Q2 ~  Elongation (fission direction) 

20 αg ~  (M1-M2)/(M1+M2) Mass asymmetry

15 ε
f1

~  Left fragment deformation

ε
f1

ε
f2

15 ε
f2

~  Right fragment deformation

15
⊗

⊗

⊗

⊗

d ~  Neck 

d

Five Essential Fission Shape Coordinates

M1 M2

⇒   2 767 500 grid points − 156 615 unphysical points

⇒   2 610 885 physical grid points

Figure 7: Five-dimensional shape parameterization used in the present potential-energy calculation.
Different colors indicate the three different quadratic surfaces defined by Eq. (1). The first derivative is
continuous where the surfaces meet. Note that we give the charge quadrupole moment Q in terms of
Pu with the same shape as the nucleus considered, so that the nuclear size effect is eliminated. The
end body masses, or equivalently volumes, M and M, refer to the left and right nascent fragments were
they completed to closed shapes. For the nascent spheroidal fragments we characterize the deformations
by Nilsson’s quadrupole ǫ parameter.

First, it is reasonable to expect that at some stage of the fission process the shape of the
emerging fragments will start to resemble the ground-state shapes of the final fragments.
Therefore we want to include in our investigation end-body eccentricities that correspond to
known final-fragment shapes in the ǫ parameterization. In terms of the Nilsson perturbed-
spheroid ǫ2 parameter [37–39] we designate the shape of surface 1 by εf1 and the shape of
the other end body by εf2. One can then show that the deformation parameters σ3 and α3
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are connected to εf1 and εf2 by the relations

σ3 =
1

2

[

(

3 − 2εf1
3 + εf1

)2

+

(

3 − 2εf2
3 + εf2

)2
]

(4)

and

α3 =

[

(

3 − 2εf1
3 + εf1

)2

−

(

3 − 2εf2
3 + εf2

)2
]

(5)

In our present calculation we investigate quadrupole shapes that in terms of εf1 and εf2
correspond to the set

{−0.2,−0.15,−0.1, 0.00, 0.1, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.35, 0.4, 0.5} (6)

This set includes most fission-fragment ground-state shapes. It is not necessary to consider
higher multipole components such as ǫ4 because for ground states below the rare-earths,
that is, in the fission-fragment region relevant to this study, higher shape multipoles usually
only lower the ground-state by a maximum of 1 MeV, often much less. Thus we have 15
left and right fragment deformations. The set includes the sphere and three oblate shapes.

A common notation used to characterize the fragment mass asymmetry of a fission event
is MH/ML where MH and ML are the masses of the heavy and light fission fragments re-
spectively. For the purpose of grid-point generation for the potential-energy calculation it
is convenient to relate a mass-asymmetry shape-degree of freedom for the prescission nu-
cleus to the final fission-fragment mass asymmetry in some fashion, although the final mass
division, strictly speaking, cannot be determined from the static shapes occurring before
scission. However, the exact nature of our definition of mass asymmetry for a single shape
has no effect on the calculated saddle-point energies and shapes because our five-dimensional
grid covers all of the physically relevant space available to the 3QS parameterization, re-
gardless of how we choose to define a “mass-asymmetry” coordinate. So that we obtain
equations that are reasonably simple to work with for the purpose of grid-point generation,
we define an auxiliary grid mass-asymmetry parameter αg

αg =
M1 −M2

M1 + M2

(7)

where M1 and M2 are the volumes inside the end-body quadratic surfaces, were they com-
pleted to form closed-surface spheroids. Thus

αg =
a21c1 − a22c2
a21c1 + a22c2

(8)

where a denotes the transverse semi-axis and c the semi-symmetry axis of the left (1)
and right (2) quadratic surfaces of revolution. The 3QS parameter α2 is then completely
determined by the relation

α2 = 2

(

(αg + 1 )2 (α3 + 2σ3 )

(αg − 1 )2 (α3 − 2σ3 )

)1/3

+ 1

(

(αg + 1 )2 (α3 + 2σ3 )

(αg − 1 )2 (α3 − 2σ3 )

)1/3

− 1

(9)
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for specific values of εf1 and εf2 of the end bodies, which determine σ3 and α3. With this
definition we select 20 grid points corresponding to

αg = −0.02 . . . (0.02) . . . 0.36 (10)

We have closely spaced the asymmetry coordinate so that we will be able to spot favorable
saddle-point shapes that may not appear in a more sparsely spaced grid. For 240Pu the
values 0.00, 0.02, and 0.36 of the mass-asymmetry coordinate αg correspond to the mass
divisions 120/120, 122.4/117.6, and 163.2/76.8, respectively.

Because of the intuitive appeal of the notation MH/ML we use it below to characterize
the “asymmetry” of a single shape. We then connect MH and ML to αg through

MH = A
1 + α

g

2
and ML = A

1 − α
g

2
(11)

for a nucleus with A nucleons for which the the left fragment is heavier that the right,
which is the case for all our examples below. For shapes with a well-developed neck the
ratio obtained with this definition can be expected to be close to the final fragment mass-
asymmetry ratio. We cannot conveniently use M1 and M2 to designate the final fragment
mass asymmetries because they do not sum up to the total nuclear volume or mass. Equa-
tion (11) simply represents a scaling of M1 and M2 so that their sum after scaling adds up
to the total mass number A.

We select the deformation parameter σ1 so that our grid consists of 41 values of the
quadrupole moment Q2. That is, for each combination d, αg, εf1, and εf2 we determine by
a numerical procedure 41 values of σ1 so that 41 preselected values of Q2 are obtained.

In the selection of σ2 values it is useful to observe that for small values of σ1 there is a
minimum neck diameter d > 0. At a certain transition point σ1 = σ1t a zero-width neck
d = 0 can form. This transition configuration, for which the middle body is absent, is the
scission configuration of completely formed fragments, or, alternatively the polar-parallel
[40] touching configuration of colliding heavy ions. For this configuration we find in the
completely general case of arbitrary mass asymmetry and end-body eccentricities:

σ1t =

√

α2 α3 − 2α2 σ3 + 2α3 − 4σ3
α2 α3 + 2α2 σ3 − 2α3 − 4σ3

+ 1

√

α3 − 2σ3
α2 − 2

(12)

Because the fission saddle point occurs before scission for heavy systems we do not investi-
gate the separated-fragment configurations that can occur in the region σ1 > σ1t. Thus, for
σ1 < σ1t the minimum value of σ2 that we consider is the minimum value allowed by the
parameterization, for σ1 > σ1t the minimum value of σ2 is the value corresponding to the
scission configuration. Based on these considerations we select 15 values of σ2 so that we
for each combination of Q2, εf1, εf2, and αg obtain a suitable spacing in the range between
the smallest and highest value possible for this highly nonlinear variable.

This choice of deformation coordinates would be expected to yield 2 767 500 grid points
in the full 5-dimensional space of the three-quadratic-surface parameterization. In fact, our
study completely exhausts the physically relevant space available in this parameterizations.
However, shapes corresponding to certain quadrupole moments do not exist for specific
combinations of the other shape parameters. For example, zero quadrupole moment cannot
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be realized for shapes with very deformed ends. In our grid there exist 156615 such “un-
physical” points. Thus we are left with 2 610 885 shapes for which we actually calculate the
potential energy.

To summarize, we consider here the physically relevant part of the full 5-dimensional
space of the three-quadratic-surface parameterization in terms of 41 values of the charge
quadrupole moment Q2, 15 steps in the neck diameter, 15 values of the fragment deformation
ε, where −0.2 ≤ ε ≤ 0.50 for each of the two nascent fragments, and 20 values of the
mass asymmetry αg = (M1 − M2)/(M1 + M2), where M1 and M2 are the volumes of
the left and right nascent fragments were they completed to closed shapes, and where
αg = −0.02(0.02)0.36. The various shape coordinates are enumerated in Fig. 7 where also
an example of a shape is shown. We have earlier [41] emphasized that it is important to
consider a dense grid in ε and mass asymmetry because fragment shell corrections vary
rapidly in a narrow range of these deformation coordinates. For example, near 132Sn the
microscopic corrections vary by 1 MeV for a change of the nucleon number A by 1 unit.

4.1 Multipole moments

The electric multipole moment Qλ for a homogeneously charged, sharp-surface volume is
defined by

Qλ = 2

(

3Z

4πr03A

)
∫

V
rλPλ(cosθ)d3r (13)

In a cylindrical coordinate system, such as the three-quadratic-surface parameterization,
this simplifies to

Qλ =

(

3Z

r03A

)
∫

V

√

ρ2 + z2 λρPλ(
z

√

ρ2 + z2
)dρ dz (14)

In the three-quadratic-surface parameterization the quadrupole moment can be integrated
out exactly.

5 Analysis of Calculated Surfaces by Imaginary Waterflow

in Five Dimensions

In spaces of high dimensionality there exist different types of equilibrium points where all
first derivatives are zero:

1. Minima where all second derivatives or curvatures are positive.

2. Maxima where all second derivatives or curvatures are negative.

3. Other equilibrium points where some second derivatives are positive and some nega-
tive. Here we are interested in identifying threshold values for fission which are often
referred to as saddle-point energies. At a fission saddle equilibrium point one second
derivative is negative and the rest are positive.

Apart from identifying the threshold energy for fission from a calculated multidimen-
sional potential-energy surface, we are also interested in establishing if there are other,
higher saddle points that may be related to competing fission modes, such as in the bi-
modal fission of 258Fm or the different observed fission thresholds in the fission of 228Ra. It
is also of interest to establish the shape of the nucleus at the saddle equilibrium points.
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The very definition of an equilibrium point suggests that we find them by taking the
derivatives of the calculated energy with respect to all deformation variables at each grid-
point and identify those points for which the first derivatives are zero. Because the energies
are calculated numerically the derivatives would then also have to be determined numeri-
cally.

However, this is not an approach that works in practice. Numerical differentiation is a
very ill-conditioned problem in the best of times. This normal difficulty is made worse here
by the character of the potential-energy function. It is only calculated to finite accuracy,
which is considerably lower than the machine accuracy, in fact to about 3 significant digits
or 0.1 MeV in the mass units we use. Because the precise choice of which basis functions
are used in the diagonalization of the single-particle Hamiltonian depends on deformation
there are small discontinuities in the potential energy of the order of 0.05 MeV or so for
infinitesimal changes in deformation, at the transition points between different sets of basis
functions.

5.1 Flooding method for saddle-point height determination

An ingenious method that avoids all the difficulties that would occur in identifying saddle-
points in an approach based on numerical differentiation was recently proposed in Ref. [42].
As presented there the method only allows the determination of the fission threshold energy.
The method is best explained by use of a two-dimensional picture. We imagine that we have
a geographical landscape of minima, maxima and saddle points and that we are looking for
the minimum-height pass or saddle-point between two minima of interest, the first being
where we are, the second where we want to go. Instead of searching for a saddle point
between two minima we may search for a saddle between a minimum, for example the
fission isomeric state, and a valley, for example a valley near the scission point. We will
sometimes designate the minima or valleys on opposing sides of the searched-for saddle
point by “entry point” and “exit point”

We now start to fill the minimum where we are with water up to some level. We define
the lowest grid point to be “wet”. We then check all immediately surrounding grid points.
If they are below the level to which we filled with water the points are marked as “wet”.
We now repeat the procedure, that is we check the immediate surroundings of all “wet”
points and those that are below the filling level are again marked as “wet”. The iteration
is continued until no more points are found below the filling level. The water level is now
raised and the iterations repeated. At some sufficiently high water level the exit point will
become wet. This level defines the saddle-point energy.

To obtain an accurate value of the saddle point energy we start by choosing a large
spacing between successive filling levels. Once we have reached the level where the exit
point becomes wet we start filling from the previous level, but with a decreased spacing.
After flowing over to the exit point we can again start from the previous level and fill from
there with a spacing that is now further decreased. It is an interesting optimization problem
how to chose these successive spacings.

5.2 Fluctuation method for saddle-point location determination

The above steps do not provide the saddle-point coordinates, or the indices corresponding
to the saddle-point location in the matrix being studied. However, one realizes that once the
water has just flowed over the saddle then the distance between the surface of the water and
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the saddle point is very small if the spacing between successive levels in the filling process
is small. But any matrix grid point along the rim of the water may be equally close or
even closer to the surface of the water. Because the energy difference between neighboring
grid-points is of the order of 1 MeV and a large number of grid-points lie at the edge of
the water, then a point along the edge may accidentally have exactly the same energy as
the saddle-point. How often this happens will depend on the details of the calculation. In
our case we save the energies at the grid points as formatted files with 3 decimals in units
of MeV. One can now argue that if we saved the energies in double precision with more
decimals, or saved the energies in double precision in binary format the probability would
be very low that this accidental agreement would occur. However, since it can never be
excluded we use the following approach to determine with certainty which grid-point is the
saddle point:

As mentioned above, we save the energies with three decimals as mass excesses relative to
the spherical macroscopic energy. This means that we are normally dealing with a number
with five or fewer significant digits. We then use the procedure described in Sect. (5.1) to
determine the saddle-point energy and location. In the iterative procedure of several fillings
with reduced distances between successive fillings we go down to a distance of 0.001 MeV
in the last iteration. When the water level is over the saddle point, that is when the exit
point has become wet, then we determine all grid points that lie between the surface of the
water and the previous level 0.001 MeV below the surface. Often we find more than one
such point. We then save the matrix locations of all such points. The next step is to add a
random number to the matrix under study. The magnitude of the number should depend
on the number of decimals saved, so for three decimals a suitable random number to add
is 0.001*RANF where RANF is a random number −1 < RANF < 1. Then we repeat the
saddle point determination, this time increasing the accuracy in the energy determination
to a higher accuracy, for example 0.0001 MeV. We then determine the grid points which
lie in the last filling interval. The location that is identical to one of the earlier locations
is then the saddle-point location. In the extremely unlikely event that two locations are
identical to two earlier locations, then one can just repeat the procedure and add a random
number with a different seed to the original energy matrix.

5.3 Dam method for multiple saddle-point identification

It is also important to determine from the multi-dimensional potential-energy surface if
there are multiple saddle-points leading to different fission modes, such as is the case in
the bimodal fission of 258Fm and the symmetric-asymmetric fission modes of 228Ra. This
can be accomplished by “building a dam” across the succession of saddle regions that are
discovered. Specifically after we have determined the first saddle-point energy and location
in the matrix under study we proceed in the following way:

The energy at the location corresponding to the saddle point is changed to 10000 MeV,
or some other suitably large number, larger than any occurring in the matrix under study.
We then determine the saddle-point as above for the new matrix. If the new saddle point is
lying next to any point with energy 10000 MeV it is not counted as a distinct saddle point
of the original surface and its energy is also raised to 10000 MeV. In the first iteration
there is of course only one point with an energy of 10000 MeV, the original, lowest saddle
point. Because of a general property of equilibrium points in multi-dimensional spaces two
saddle points have to be separated by a maximum. Therefore, once a sufficiently large
neighborhood of the original saddle point has been dammed up, the next saddle-point that
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is discovered in our iteration process will not lie next to the dam, but will be some distance
removed. Thus, a new saddle point will be identified some distance away from the 10000
MeV dam wall after several “saddle points” that were found lying next to the “dam” of
10000 MeV energies during the building of the dam were discarded.

5.4 Multiple fission-valley structures

The dam method for identifying additional saddle-points does not show with certainty how
they are connected to valleys that may exist further out in the potential-energy landscape.
To obtain this information we must perform additional analyses. In particular it is of
interest, once the threshold energies for fission have been identified, to establish if structure
in the potential-energy surface leads to multi-mode fission, such as that of the well-known
three-peaked mass distribution in 228Ra fission [1]. To look for such structure we investigate
as a first step if there are valleys of distinctly different character running in the fission
direction of increasing Q2. That is, for 10 or more fixed Q2 values beyond the outer saddle
region, we determine all minima in the remaining 4-dimensional space of the two fragment
deformations, neck diameter and mass asymmetry.

We find that there are often two distinct valleys in the region beyond the second saddle
region, one corresponding to a mass asymmetry αg of about [140 − (A − 140)]/A that is
preserved along the valley and one corresponding to mass symmetry. To understand the
significance of these valleys it is necessary to determine further details about their structure.

A slight modification of the flooding method allows us to determine that separate saddle
points provide entries to the two valleys. In the standard flooding strategy an exit point in
either of the two valleys gets “wet” as soon as the same specific saddle threshold is exceeded.
This is because the water will flow over the lowest saddle point and down the corresponding
valley and then, when sufficiently far along in this valley, it will flow backwards up the
other valley. Therefore we block the flow at a certain Q2 value, say 86 b, so that the water
does not flow any further. This can be simply accomplished by ignoring points with higher
Q2. In such an approach one valley gets flooded through one saddle point corresponding to
a distinct energy and shape and the other valley through another saddle with a distinctly
different shape and energy. If the blockage is moved to successively higher Q2 then the two
saddle points remain unchanged until a critical Q2 is reached, at which the higher of the
two saddles disappears and a new saddle appears just at the blocking wall. This happens
when we are sufficiently far down the valley that is entered through the lower saddle point
so that the ridge separating the two valleys becomes lower than the higher of the two saddle
points seen when the valleys were blocked higher up. To determine the height of the ridge
between the two valleys along their entire length we study for each fixed Q2 the remaining
4-dimensional space in which the two valleys correspond to two minima and the ridge to
the saddle separating them. We use the flooding algorithm in four dimensions to localize
this saddle. These strategies can also be applied to surfaces with more than two valleys.

6 Results

We have calculated five-dimensional potential-energy surface for 138 even-even nuclei from
Pb to Fm. We are currently subjecting these surfaces to various types of imaginary water-
flow analyses as discussed in the previous section.

As examples of the structures we have found in the calculated 5-dimensional potential-
energy surfaces, we show in Figs. 8 and 9 some fission-valley and separating-ridge features



P. Möller, A. Iwamoto, and D. G. Madland/Structure of Fission Potential-Energy . . . 18
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Figure 8: Potential-energy valleys and ridges and corresponding nuclear shapes for Ra. The first
point on the two curves with the label “valley” are actually saddle-points at the entrance to the valley
that emerges beyond the saddle point. The subsequent points correspond to symmetric or very nearly
symmetric shapes. It is of interest to note that the entrance to the symmetric valley is slightly asymmetric.
The entry saddle-point to the symmetric valley is 1.13 MeV higher than the entry saddle-point to the
asymmetric valley. The highest point on the separating ridge is 2.47 MeV higher than the symmetric
saddle. The thin dashed line represents the threshold energy for fission. All energies are given relative to
the spherical macroscopic energy.

obtained for 228Ra and 232Th. We also show in Figs. 10 and 11 the mass splits in the
mass-asymmetric fission valley. The first point on the fission-valley potential-energy curves
in Figs. 8 and 9 is the saddle point for entry into the particular valley. The nuclear shapes
corresponding to the saddle points are shown to the left in the figure. Shapes corresponding
to the symmetric and mass-asymmetric valleys at Q2 = 86 b are shown to the right. Note
that the shape corresponding to the entry to the mass-symmetric valley is slightly mass-
asymmetric. The thin dashed line is the calculated threshold potential energy for fission,
which to be consistent with the other curves is given relative to the spherical macroscopic
energy.

The calculated structure of the potential-energy surface therefore is consistent with the
observed bimodal fission features in this region of nuclei [1,2]. The high ridge separating
the two valleys for 228Ra is peaked at 2.47 MeV above the entrance saddle to the symmetric
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232Th Potential-Energy-Surface Structure 
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Figure 9: Potential-energy valleys and ridges and corresponding nuclear shapes for Th. The first
point on the two curves with the label “valley” are actually saddle-points at the entrance to the valley
that emerges beyond the saddle point. The subsequent points correspond to symmetric or very nearly
symmetric shapes. It is of interest to note that the entrance to the symmetric valley is slightly asymmetric.
The entry saddle-point to the symmetric valley is 2.17 MeV higher than the entry saddle-point to the
asymmetric valley. The highest point on the separating ridge is 1.56 MeV higher than the symmetric
saddle. The thin dashed line represents the threshold energy for fission. All energies are given relative to
the spherical macroscopic energy.

valley. It therefore keeps the mass-symmetric and mass-asymmetric modes well separated
until scission, which is consistent with the experimentally observed data discussed in the
introduction. Compare also with Fig. 1. Our results in Fig. 8 are also consistent with the
observed total fragment kinetic energies which are about 10 MeV higher for asymmetric
fission than for symmetric fission for some nuclei in this region, cf. Fig. 2. Because the
division into two fragments occurs at higher values of Q2, corresponding to more elongated
scission shape configurations, in the symmetric valley than in the asymmetric valley accord-
ing to our calculations, the final-fragment kinetic energies can be expected to be higher for
the asymmetric fission mode than for the symmetric fission mode, in agreement with Fig. 2.

For 232Th the lower separating ridge, peaked at 1.56 MeV above the entrance saddle
to the symmetric valley, allows the symmetric component to partially revert back to the
asymmetric valley before scission for 232Th. Therefore, there is only a very weak symmetric
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Figure 10: Mass divisions in asymmetric fission for a sequence of Th isotopes from Th to Th. The
results are in excellent agreement with the experimental observation of a constant-mass heavy fragment
at mass number A ß 140 and a light fragment mass corresponding to the remainder of the mass of the
original fissioning nucleus.

fission component in low-energy fission of 232Th. We find that the existence of at least two
paths in the five-dimensional potential-energy surface is a general result for nuclei in this
region and we are now exploring their relative importance over the large range of nuclei for
which we have calculated potential-energy surfaces. We note that experimental fission data
in the light-actinide region are interpreted in terms of two fission paths, one mass symmetric
and one mass asymmetric. The saddle leading to mass-symmetric division is found to be
one to two MeV higher than the saddle leading to mass-asymmetric division for nuclei
in this region, in excellent agreement with our calculated potential-energy surfaces. Also,
the experimental total fragment kinetic energies are higher in asymmetric fission than in
symmetric fission. These observations [2,3] are consistent with the compact and elongated
shape configurations that we obtain in the corresponding fission valleys.

As we pointed out in the introduction it is a long-standing observation that in binary
fission actinide nuclei preferentially divide into one fragment of about mass 140 and a
complementary, smaller fragment of mass A − 140, where A is the mass number of the
original nucleus. We show in Fig. 10 our calculated results for the mass divisions in fission
along the thorium isotope chain. For all isotopes we have by the imaginary water-flow
technique identified the fission valley corresponding to mass-asymmetric fission at Q2 = 76
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Asymmetric Valley Mass Split for 232Th 
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Figure 11: Mass division of the emerging fragments in the asymmetric fission valley for Th for
various quadrupole moments between the saddle and scission points. The values vary only slightly along
the valley and converge towards values that are in excellent agreement with the observed peaks of the
fragment mass distributions.

b. The value of the mass-asymmetry coordinate αg at the valley bottom directly yields
the mass of the heavy and light fission fragment according to Eq. (11). The “valley floor”
corresponds to a local minimum in the four-dimensional space remaining when Q2 is fixed
at a specific value. To show that the results do not depend significantly on the value of Q2
selected, we show in Fig. 11 the calculated fragment asymmetries that are obtained for a
range of Q2 values for the isotope 232Th. The values remain quite stable, in particular for
large values of Q2.

Nuclei in the region near 258Fm also exhibit bimodal features in fission as discussed in
[4]. We have earlier tentatively identified bimodal structures in calculated two-dimensional
potential-energy surfaces [10,15], but it remained until now to verify that these interpre-
tations are still valid when the calculation is taken from two to five dimensions. In the
Fm region we have used one of the imaginary water-flow techniques described previously,
namely the dam method, to find alternative saddle points that are higher in energy than
the lowest threshold saddle point. For 256Fm and 258Fm we find the two distinct classes
of saddle points shown in Fig. 12. For 256Fm the shape of the lowest saddle indicates it
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Fermium Bimodal Saddle-Point Shapes
Graphics by Peter Möller

256Fm: Higher outer saddle (Towards high TKE) 
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256Fm: Lowest outer saddle (Towards low TKE) 

εf1 = 0.1500   εf2 = 0.2000   MH/ML = 145.9/110.1

258Fm: Higher outer saddle (Towards low TKE) 

εf1 = 0.1000   εf2 = 0.1000   MH/ML = 152.2/105.8

258Fm: Lowest outer saddle (Towards high TKE) 
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Figure 12: Multiple, bimodal saddle-point shapes for Fm and Fm based on the grid used in
Ref. [41].

corresponds to normal, low-TKE fission similar to what is observed in fission of slightly
lighter actinides. However, another saddle point exists, which we calculate to be 0.30 MeV
higher than the lower saddle point. This may correspond to fission into compact scission
configurations with high kinetic energies. For 258Fm the latter type of saddle-point be-
comes the lowest saddle point. Thus, we reproduce the experimentally observed transition
point between asymmetric low-TKE fission and symmetric high-TKE fission as observed
experimentally [4].

7 Summary

The above analysis of our calculated potential energy landscapes in five dimensions allows
us to draw the following conclusions:

1. Multiple fission paths are found for most nuclei.

2. For radium and light actinide nuclei two paths are dominating: one mass-asymmetric
and one mass-symmetric. These paths correspond to different fission modes, such as
those illustrated in Figs. 1 and 2 in the Introduction.

3. The difference in energy between the symmetric and asymmetric saddle-points in our
calculated potential-energy surfaces is one to two MeV, which is consistent with the
experimentally deduced differences of one to two MeV in threshold energies for these
two modes.
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4. The shapes we calculate for nuclei evolving in the mass-asymmetric and mass-symmetric
valleys are consistent with the total fragment kinetic energies observed for these
modes.

5. The long observed mass split in mass-asymmetric fission with a constant heavy frag-
ment mass near A = 140 is reproduced convincingly in our calculations.

These results have been obtained in our standard finite-range liquid-drop potential-
energy model, which is also applied to the calculation of nuclear masses. No change in
the model or its parameters have been made in the current calculation, relative to its 1992
specification in Ref. [9].

The HPC calculations on which the results in this paper are based were carried out
on the alpha cluster of 4 CPUs at the TANDEM accelerator in JAERI in the winter of
1998–1999 and subsequently on the 140 AVALON cluster of alpha CPUs at Los Alamos.
Results of the investigations at JAERI are discussed in Ref. [41]. This research is supported
by the US DOE under contract W-7405-ENG-36.
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13) J. Randrup, C. F. Tsang, P. Möller, S. G. Nilsson, and S. E. Larsson, Nucl. Phys.
A217 (1973) 221.
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P. Möller, A. Iwamoto, and D. G. Madland/Structure of Fission Potential-Energy . . . 24
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