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Abstract. We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y (Z,N)
versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables.
The approach is to use Brownian shape-motion on a macroscopic-microscopic potential-energy surface
which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole
moment Q2), neck d, left nascent fragment spheroidal deformation ǫf1, right nascent fragment deformation
ǫf2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The
extension of previous models 1) introduces a method to calculate this generalized potential-energy function
and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the
previous version the potential energy was calculated as a function of Z and N of the compound system
and its shape, including the asymmetry of the shape. We outline here how to generalize the model from
the “compound-system” model to a model where the emerging fragment proton and neutron numbers also
enter, over and above the compound system composition.

PACS. 25.85.Ca discribing text of that key – 24.10.Lx discribing text of that key – 24.75.+i discribing
text of that key – 25.85.Jg discribing text of that key

1 Introduction

In previous investigations it has been shown that a re-
alistic description of the experimentally observed fission-
fragment charge distributions can be obtained by means of
randomwalks on tabulated five-dimensional (5D) potential-
energy surfaces calculated for a densely spaced grid for
over five million different shapes [1–3] . It was particu-
larly encouraging that the 70 charge-yield distributions
measured at GSI [4] were well reproduced, including the
transition from symmetric fission for light Th isotopes to
asymmetric fission for the heavier isotopes beyond A ≈
226. However, the often strongly fluctuating patterns of
odd-even staggering were not possible to obtain in that
implementation of the model. Briefly stated, the reason
was that there was no mechanism that allowed the prop-
erties of the two nascent fragments to affect the calculated
potential-energy surface. For example, pairing was treated
for the compound system as a whole.

In the literature there have been numerous discussions
of odd-even staggering and models proposed to quanti-
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tatively describe this feature. For example the effect has
been correlated with Coulomb-related quantities, such as
Z2/A and Z2/A1/3, referred to as order parameters, and
to pairing effects on the nuclear level density and its vari-
ation with excitation energy, see Refs. [5–7] and references
therein. Other models are based on properties of separated
fragments and thermal equilibrium at scission. For a re-
view see Ref. [8]. Common for these models are that they
are not based on detailed, calculated potential-energy sur-
faces or dynamical evolution on such surfaces. The mod-
els often also contain a substantial number of postulated
terms with parameters which are determined from adjust-
ments to observed yields. Another group of models do
treat dynamical evolution, in a Langevin approach. Until
now they are based on macroscopic potential-energy sur-
faces. or, when shell effects are included the calculations
are performed for three shape variables for fairly high ex-
citation energies (E∗ = 20 MeV), see Ref. [9] for a brief
review but with extensive references to original work.

In the Brownian shape-motion (BSM) model the only
parameters are those of a well-established macroscopic-
microscopic model used to calculate the five-dimensional
(5D) potential-energy surfaces [10] in which the parame-
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ters have been unchanged since 2002 [11], the additional
critical neck radius at which the mass split is frozen, a
weak bias potential (but the results are fairly insensitive
both to the magnitude of the critical neck radius and to
the bias potential strength [1,2]), and two parameters in a
“suppression factor” that accounts for the decrease of the
shell-plus-pairing correction with energy [3].

We have recently shown that the observed magnitude
of the odd-even staggering can be directly correlated to
the excitation energy above the outer part of the calcu-
lated potential-energy surface [12]. Therefore we suggested
the BSM model could describe odd-even staggering if a
potential-energy model were developed that accounts for
how the individual nascent fragment properties are ex-
pressed in the calculated potential-energy surface [12].

Here we propose a model for the potential-energy sur-
face in which the properties of the individual fragments
gradually emerge as the scission configuration is approached
and specify the full details this proposed model. To treat
odd-even staggering we add to the potential energy, as is
customarily done since the dawn of nuclear mass calcu-
lations [13,14], a pairing contribution ∆ to emerging odd
fragments. However, since we start our trajectories at the
ground-state shape of the even-even parent nuclei, where
there is no odd pairing effect, only a fraction of the pair-
ing delta of the fully formed final fragments is added in
the initial stages of division. This fraction grows with de-
creasing neck diameter, see below for further discussion
and specification.

We also introduce a correlated transfer of paired nu-
cleon configurations. Such correlated nucleon transfers,
which are different from sequential transfers, are often
identified in nuclear reaction experiments, for a discussion
see the presentation in Ref. [15] and the many references
cited therein, for example Refs. [16,17].

It turns out that we can incorporate our new ideas in
calculations of charge yields, with minimal modifications
of existing computer codes. Our first results on charge
distributions are presented below.

2 Shape parameterization and notations

To describe the nuclear shape we use the three-quadratic-
surface (3QS) parameterization. It was introduced almost
50 years ago [18]. It is much more cumbersome to deal
with than, say, a multipole expansion such as the β pa-
rameterization [19], but is used to allow a realistic descrip-
tion of shapes of a fissioning nucleus up to and including
division of the single shape into separated fragments. Par-
ticularly noteworthy is that the emerging fragment shapes
can be deformed spheroids or exact spheres. The latter is
of special importance because it allows the extra binding
associated with spherical doubly-magic nuclei to be accu-
rately calculated. More details are found in Ref. [18]; the
discussions of Figs. 1 and 2 there are particularly infor-
mative. How we design our potential-energy calculations
in terms of this parameterization is detailed in Refs. [20,
10]; here we briefly summarize a few essential details.

a2a3
a1

ρ

z

l1
z1

l3
z2

l2

c1 c2
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Fig. 1. Shape generated by the three-quadratic-surface pa-
rameterization. Different colors distinguish between the shape
sections generated by the three expressions in Eq. (1).

In the (3QS) parameterization the shape of the nu-
clear surface is specified in terms of three smoothly joined
portions of quadratic surfaces of revolution. They are com-
pletely specified [18] by
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Here the left-hand surface is denoted by the subscript 1,
the right-hand one by 2 and the middle one by 3. Shapes 1
and 2 are spheroids, for which c is the semi-symmetry axis
length, a is the semi-transverse axis length, and l specifies
the location of the center of the spheroid. The middle body
may be a spheroid or a hyperboloid of one sheet, for which
c3 is imaginary. At the left and right intersections of the
middle surface with the end surfaces the value of z is z1
and z2, respectively. Surfaces 1 and 2 are also referred to as
end bodies and, alternatively, nascent fragments. A shape
generated by the parameterization in Eq. (1) is shown in
Fig. 1.

In our calculations we use five shape parameters: elon-
gation in terms of quadrupole moment Q2, left and right
fragment spheroidal deformations ǫf1 and ǫf2, neck diam-
eter d and mass asymmetry αg. These five parameters
completely specify the shape for which the potential en-
ergy is calculated and have been extensively discussed in
Ref. [10]. Also, they completely exhausted the shape space
available to this parameterization (except, trivially, for in-
cluding larger values in each of the five shape parameters).
For our studies here we need to revisit the asymmetry vari-
able αg which is directly connected to the asymmetry of
nuclear shape (and the separated fragments):

αg =
a21c1 − a22c2
a21c1 + a22c2

. (2)
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This is equivalent to

αg =
M c

1 −M c
2

M c
1 +M c

2

(3)

where M c
1 and M c

2 are the volumes inside the end-body
quadratic surfaces, were they completed to form closed-
surface spheroids and “c” in the notation is to clarify
we are referring to quantities of the compound single-
shape system. To avoid the introduction of a large number
of equivalent concepts we use somewhat interchangeably,
“mass”, “volume” and nucleon number A.

Our random-walk tracks end at a point where the neck
radius of the nuclear shape is quite well developed, namely
at 2.5 fm (compare to the radius of a spherical 240Pu nu-
cleus which is 7.2 fm), so the shape has almost reached
the configuration of separated fragments. The neck radius
is actually smaller than the radius of 16O for which the ra-
dius is 2.92 fm, and which is the lightest nucleus to which
we have applied the macroscopic-microscopic method. Al-
though M c

1 and M c
2 for shapes with well-developed necks

can be expected to be close to the final fragment masses
we cannot directly compare M c

1 and M c
2 to the observed

fission fragment massesM s
1 andM s

2 (where the superscript
“s” indicates we refer to the separated fragments) because
the former do not quite sum up to the total nuclear vol-
ume or mass A. However, by scaling M c

1 and M c
2 so that

their sum adds up to the total mass number A, we can
directly relate the “mass asymmetry” of the compound-
nucleus shape to the observed heavy and light fragment
masses. We obtain trivially

M s
1 = rsM

c
1 = A

1 + α
g

2

M s
2 = rsM

c
2 = A

1− α
g

2
and (4)

rs =
A

M c
1 +M c

2

where rs is a scaling factor for a nucleus with A nucle-
ons. The scaling is equivalent to a assigning the mass in
the neck region to the left and right nascent fragments
in proportion to the respective volumes of these nascent
fragments, were they completed to closed spheroids. The
amount of matter involved is in the range of 10–20 nu-
cleons. It is obvious how the same definitions apply to
the proton and neutron numbers. The symbols Z and N
are used for proton and neutron numbers of the fissioning
compound system. We then have:

Zs
2 = Z − Zs

1 and N s
2 = N −N s

1 (5)

Therefore we usually use only Zs
1 and N s

1 when we explic-
itly refer to the number of fragment protons and neutrons,
the other fragment proton and neutron numbers are then
also specified. To calculate the yield as a function of both
fragment proton and neutron number obviously requires
that the previous 5D model (which always assumed that
the proton to neutron ratios in both fragments were equal
to the proton to neutron ratio in the compound system)

be generalized to 6D so that the yield Y (Zs
1, N

s
1, Z

s
2, N

s
2),

which is a function of both proton and neutron asymme-
try is obtained. We also realize that to describe odd-even
effects requires that we space the grids we will use in terms
of integer spacing of Zs

1 and N s
1 in some fashion which we

will now introduce.

3 Potential energy versus shape and nascent

fragment proton and neutron number

The method to calculate the two-dimensional fission-fragment
yield Y (Z,N) function that we now introduce is perhaps
most transparently explained by occasionally referring to
specific aspects of the computer code used to calculate, in
the macroscopic-microscopicmethod, potential-energies as
functions of shape. In our current potential-energy model
and code we obtain a total potential energy for a specific
compound nucleus (Z,N) and a specific “shape” as a sum
of a macroscopic energy (given by a liquid-drop type ex-
pression) and a microscopic shell-plus-pairing correction:

Epot(Z,N, shape) = Emac(Z,N, shape)

+E prot
s+p (Z, (N), shape) (6)

+E neut
s+p ((Z), N, shape)

where Emac(Z,N, shape) is the macroscopic energy and

E prot
s+p is the proton shell-plus-pairing correction and the

final term the neutron shell-plus-pairing correction. In a
calculation for a specific compound system and a specific
shape these shell-plus-pairing corrections can trivially be
individually tabulated. To obtain, say, the proton micro-
scopic correction single-particle levels are calculated nu-
merically in a folded-Yukawa single-particle potential with
a functional form derived from the nuclear shape [21,19].
From these levels the shell correction is obtained by use
of the Strutinsky method [22,23] and the pairing correc-
tion through, in our case, the Lipkin-Nogami method, as
detailed in [24]. Thus, the proton microscopic correction
is independent of neutron number, except that the poten-
tial radius and depth depend on both proton and neutron
number, therefore we have used the notation (N) and (Z)
to indicate a weak dependence. But for small variations
of neutron number the effect on the proton microscopic
correction is small and can be neglected, an important
observation that we will make use of later. To show this
insensitivity we have calculated the proton and neutron
shell-plus-pairing corrections for the ground-ground state
shape of 270

108Hs162 for the single-particle fields appropriate
for this nucleus. We find for the proton and neutron shell-
plus-pairing corrections -3.7023 and -5.3715 MeV, respec-
tively. When we do the calculation for single-particle fields
appropriate for 274

112Cn162 we find that the proton and neu-
tron shell-plus-pairing corrections are -3.6305 and -5.3353
MeV respectively. So when we change the proton number
by 4 units and implement the corresponding effect on the
neutron single-particle field the neutron shell correction
changes by only 0.0362 MeV. The change in the proton
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shell-plus-pairing correction is larger because proton field
changes more than the neutron field when we change the
proton number.

In the fission potential-energy code the shapes that can
be studied are described in terms of the three quadratic
surfaces of revolution: two end spheroidal sections and a
middle region that near scission is a hyperboloid of revo-
lution [21] as discussed in the previous section, see Eq. (1)
and Fig. 1. In the computer code the equations for these
shapes need to be specified; five independent shape param-
eters are required for the shape specification. Historically
the shape parameters α and σ were used [21]. But to more
directly visualize the shape, we now characterize the shape
in terms of five equivalent shape parameters: quadrupole
moment Q2, related to the elongation of the shape, neck
diameter d, left fragment spheroidal deformation ǫf1, right
fragment spheroidal deformation ǫf2, and mass asymme-
try αg. The transformations from these parameters to the
parameters of the quadratic functions that generate the
shapes in the code are very lengthy and non-linear. They
are described in Ref. [10]. For our discussion here we need
to know that

αg =
M c

1 −M c
2

M c
1 +M c

2

=
M s

1 −M s
2

M s
1 +M s

2

(7)

Rather than discussing the asymmetry in terms of nu-
cleon number A we can use the above concepts and discuss
the charge asymmetry; we have earlier assumed that the
proton to neutron ratio is the same in both fragments. We
now develop an approach to treat different ratios, that is
if the proton and neutron numbers are Zs

1 and N s
1 in one

of the fragments and Z − Zs
1 and N − N s

1 in the other
fragment we will treat

Zs
1

N s
1

6=
Z

N
6=

Z − Zs
1

N −N s
1

=
Zs
2

N s
2

(8)

It follows from previously that when we discuss the asym-
metry in terms of proton number we can write

αg =
Zs
1 − Zs

2

Zs
1 + Zs

2

(9)

When we calculate the potential energy for the compound
system that should correspond to specific (in our case inte-
ger) separated-fragment charge numbers we use Eq. (9) to
define the asymmetry αg of the corresponding compound-
nucleus shape for which we calculate proton shell-plus-
pairing corrections and macroscopic energies which are
needed in our model. We need additional terms to describe
how the macroscopic energy changes when we allow differ-
ent proton to neutron ratios in the two fragments, mainly
a symmetry-energy effect. We will discuss how to obtain
this effect below. Correspondingly we can define the asym-
metry αg for neutrons so that it corresponds to integer
splits of neutron number and tabulate the calculated neu-
tron shell-plus-pairing corrections. Below we specify how
these results serve as the starting point to obtain the po-
tential energy for ratios between the proton and neutron
numbers that are different in the two fragments.

We discussed above why the shell-plus-pairing correc-
tions for protons and neutrons can be calculated indepen-
dently of each other, to a very high degree of accuracy.
Therefore we can write

Epot(Z,N,Q2, d, ǫf1, ǫf2, Z
s
1, N

s
1) =

Emac(Z,N,Q2, d, ǫf1, ǫf2, Z
s
1, N

s
1)

+ E prot
s+p (Z,N,Q2, d, ǫf1, ǫf2, αg(Z

s
1)) (10)

+ E neut
s+p (Z,N,Q2, d, ǫf1, ǫf2, αg(N

s
1))

+ Eodd

Therefore, to obtain the total shell-plus-pairing correc-
tions for any fragment split (Zs

1, N
s
1) we calculate and tab-

ulate the proton shell-plus-pairing corrections for a grid
in αg corresponding to integer Zs

1 (and the corresponding
Zs
2), obtained from Eq. (9). We calculate the neutron shell-

plus-pairing correction for a different spacing in αg corre-
sponding to integer spacing in N s

1. Thus the 6-dimensional
shell-plus-pairing correction for any mass split (Zs

1, N
s
1) is

the sum of two 5-dimensional functions.
To obtain Emac(Z,N,Q2, d, ǫf1, ǫf2, Z

s
1, N

s
1) we proceed

in several steps. First, when we run the code to calculate
and tabulate the proton shell-plus-pairing correction for
integer values of Zs

1 we also tabulate the macroscopic en-
ergy. It will then be obtained for non-integer values

N t
1 = N ×

Zs
1

Z
(11)

of N s
1, because the asymmetry variable αg was chosen to

correspond to integer values of Zs
1.

Thus we have tabulated

Emac(Z,N,Q2, d, ǫf1, ǫf2, Z
s
1, N

t
1) (12)

where we need to remember that here N t
1 corresponds to a

non-integer value because the asymmetry of the shape was
chosen to yield integer Zs

1. The superscript “t” stands for
“tabulated”. We need this tabulated value as one term in
the macroscopic energy-model expression we now develop.

But we need to obtain the macroscopic energy for (sev-
eral different) integer N s

1. It would be difficult to obtain
such macroscopic energies by developing a model that in-
tegrated across the compound nuclear shape for a config-
uration with variable proton and neutron densities across
the shape. But we now pose that we will get a sufficiently
accurate model by considering changes in the macroscopic
energy relative to the tabulated macroscopic energy we
discussed in Eq. (12). These changes are mainly due to
changes in the symmetry energies, with considerably smaller
contributions from other effects. We can obtain those by
suitable consideration of changes in the macroscopic en-
ergy of separated fragments. These we calculate as changes
in sum of the macroscopic energy of separated spherical
fragments. Therefore we calculate the sum of the spheri-
cal macroscopic energies for two separated nuclei for the
specific fixed Zs

1 (related to Eq. (12)) and for a number of
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Table 1. Spherical fragment macroscopic energies and their
sums for various fragmentations of the compound system 236U
leading to fragment charges 52/40; only the neutron fragmen-
tations vary. the columns labeled Ef1 and Ef2 correspond the
first and second term of line two in Eq. (13). The lowest sum is
obtained with the proton to neutron ratio as equal as possible
in the two fragments and to that of the compound system. The
line corresponding to this division is indicated by a “C” in the
last column.

Zs
1 N s

1 Ef1 Zs
2 N s

2 Ef2 Ef1 +Ef2

52 96 -15.95 40 48 -84.661 -100.608
52 94 -26.35 40 50 -87.387 -113.741
52 92 -36.10 40 52 -88.671 -124.770
52 90 -45.16 40 54 -88.592 -133.751
52 88 -53.51 40 56 -87.222 -140.731
52 86 -61.12 40 58 -84.626 -145.748
52 84 -67.97 40 60 -80.868 -148.839

52 82 -74.03 40 62 -76.004 -150.032C

52 80 -79.26 40 64 -70.088 -149.348
52 78 -83.64 40 66 -63.170 -146.807
52 76 -87.12 40 68 -55.298 -142.422
52 74 -89.68 40 70 -46.515 -136.199
52 72 -91.28 40 72 -36.862 -128.143
52 70 -91.87 40 74 -26.377 -118.250
52 68 -91.42 40 76 -15.097 -106.515
52 66 -89.87 40 78 -3.055 -92.926

different Nν :

E sep
mac(Z

s
1, Nν , Z − Zs

1, N −Nν) =

E sph
mac (Z

s
1, Nν) + E sph

mac (Z − Zs
1, N −Nν) (13)

No odd-particle pairing effects should be included here;
those are treated as discussed below. This function is tab-
ulated for Zs

1 = 52 in Table 1 for fission of 236U. We
note that in this integer-spaced grid the minimum energy
occurs for a split where the sum of Z/N ratios in the
two fragments is as close as possible to 2 × Z/N of the
compound nucleus. The line corresponding to this split is
indicated by a “C” at the very right.

We pose that the macroscopic energy for any fragment
division (Zs

1, N
s
1) in the fissioning system is given as

Emac(Z,N,Q2, d, ǫf1, ǫf2, Z
s
1, N

s
1) =

Emac(Z,N,Q2, d, ǫf1, ǫf2, Z
s
1, N

t
1)

+ E sep
mac(Z

s
1, Nν , Z − Zs

1, N −Nν)

− E sep
mac(Z

s
1, N

t
1 , Z − Zs

1, N −N t
1 ) (14)

where the last term is calculated by interpolation in the
table corresponding to Eq. (13). As a specific example
we discuss a fragment division where the charge split is
52/40. Then N t

1 = 81.39. We tabulate the sum in Eq.
(13) as the right column in Table 1 and plot this sum
for the specific charge division in our example in Fig. 2.
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Fig. 2. Sum of separated-fragment macroscopic energies.

As an example that we can now, in our model, calcu-
late the macroscopic energy for any (Zs

1, N
s
1). To illustrate

this we continue to discuss our specific example. Equation
14 is a complete specification of the method. Suppose we
want to calculate the macroscopic energy for the partic-
ular case Emac(92, 144, Q2, d, ǫf1, ǫf2, 52, 64). Then we ob-
tain the first term in the right member of Eq. (14) from our
tabulated function in Eq. (12). For our choice of N s

1 = 64
the second term is given by the energy at the upper hori-
zontal line and the third term by the energy at the lower
horizontal line in Fig. 2. Thus in this example we obtain
the macroscopic energy as a sum of the tabulated macro-
scopic energy plus ∆E indicated in Fig. 2.

One may argue that since some of the fissioning shapes
involve deformed nascent fragments the terms in Eq. (13)
should be evaluated for the corresponding deformed shapes.
But for the differences we consider here it only makes a
minuscule difference. Let us choose 102Zr and 106Zr in Ta-
ble 1 as an illustrative example. The energy difference for
the spherical shapes ∆Esph tabulated is

∆Esph = −63.108− (−75.973) = 12.865 (15)

We have evaluated the macroscopic energies for deformed
shapes with ǫ2 = 0.5, which is the largest deformation for
emerging fragments in our specified deformation grid, see
Ref. [10] and obtain

∆Edef = −53.262− (−66.108) = 12.846 (16)
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Thus, although the absolute energies change considerably
the effect on their differences is completely negligible, only
0.019 MeV.

Finally we need to account for odd pairing effects in
the emerging fragments. When the fragments are fully de-
veloped with zero neck radius of the compound system a
common assumption is that for odd-odd splits the extra
odd contribution to the energy should be Eodd = 2 × ∆
where ∆ is the pairing-gap parameter, chosen as ∆ = 1.0
MeV. With a non-zero neck radius the effect of pairing of
the emerging odd splits would be smaller; for very com-
pact shapes with no obvious neck there should be no effect.
This leads to the following prescription for the odd energy
of the fissioning system

Eodd = 2×∆× (BW − 1)k odd Zs
1, Z

s
2

Eodd = 0 even Zs
1, Z

s
2

(17)

where, with the choice k = 1, (BW − 1)k is the shape
dependence of the Wigner term in our potential-energy
model. The shape factor BW is 1 for a shapes with no neck
and increases continuously, as the neck develops, to 2 for
separated fragments. It is necessary to postulate such a
shape dependence because the macroscopic energy of two
separated fragments contains two Wigner terms, the orig-
inal system only one. Without such a shape dependence
a discontinuity of the order of 10 MeV would occur at
scission of actinide nuclei. That is, if we calculated the
energy for a deforming nucleus up to the scission point
we would at scission obtain a 10 MeV lower energy than
if we calculated the energy of two approaching separated
fragments. A pedagogical figure illustrating this and the
necessity of this shape dependence is in Ref. [11], Fig. 1.
Since we need a realistic potential-energy surface in the
scission region we do need to consider these issues (which
have in many investigations been ignored). The compre-
hensive discussion of the shape-dependence of the Wigner
term in Ref. [25] carries directly over to how the effect of
the pairing ∆ increases as the neck becomes more narrow.
There is no known derivation of the Wigner shape depen-
dence so it is just postulated, but with consideration of
its limiting behavior [25]. The power constant k, which
we introduced here to allow some sensitivity studies, gov-
erns how early in the division process the character of the
two fragments causes the “second” Wigner term, or in our
case, the odd pairing effect, to manifest itself. Below we
will present sensitivity studies on the shape dependence
and on the magnitude of the pairing delta.

4 Application to Charge Asymmetries

A calculation of the complete (2D) Y (Z,N) yield distribu-
tion based on the above model would lead to much more
complex calculations compared to our current 5D imple-
mentation [1–3], because of its 6D nature and associated
vastly increased storage requirements, But, as a test of
the above approach, we can study many of its aspects
by looking at the odd-even staggering in charge distri-
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Fig. 3. Two-dimensional slice in the 5D space schematically
illustrating possible candidate points for the next trajectory
step. The smaller square with gray-filled circles inside, indi-
cates the limit originally chosen for next step candidate points.
The circles partially filled with gray correspond to transfer of
paired configurations.

butions without treating the neutrons separately. We ob-
viously then have to calculate the potential energy for
field asymmetries αg that correspond to integer spacing
of the proton number Zs

1. For
240Pu, for each combination

of the other 4 shape variables [10], we calculate the po-
tential energies for asymmetries corresponding to charge
splits 47/47, 46/48, 45/49 . . . , and accordingly for other
elements. This corresponds to “averaging” or “summing”
over the neutron variable, a procedure we assume has lim-
ited effects on the charge distributions obtained relative to
summing over N a calculated complete 2D Y (Z,N) dis-
tribution. Thus, we obtain in strict analogy with our pre-
vious results, on a discreet grid the 5D potential-energy
matrix Epot(I1, I2, I3, I4, I5) where I1 corresponds to the
quadrupole moment (or elongation), I2 to the neck radius,
I3 to spheroidal deformations of one of the emerging frag-
ments, I4 to spheroidal deformations of the other emerg-
ing fragment, I5 to charge asymmetries Zs

1/Z
s
2, where the

charge numbers are integers. However, since the calculated
energy, Ecomp, does not contain contributions from pair-
ing effects in the emerging fragments we add the shape-
dependent odd enhancement according to Eq. (17). It turns
out very few modifications of the random walk code are
required for this calculation.

In the BSM model we find the yield distributions by
generating paths through the potential-energy matrix as
follows. We usually start the path at the ground state
(black dot in the schematic 2D Fig. 3). We then select
randomly one of the 242 surrounding points (circles with
gray interior in Fig. 3, only 8 of them in this schematic
representation) as a candidate for the next point on the
track. Suppose the energy difference between this point
and the current point is ∆V . Then, if ∆V < 0 the can-
didate point becomes the next point (and current point
“at the next throw of the dice”) on the path. However,
if ∆V > 0 this outcome is only selected with probabil-
ity P = exp(−∆V/T ) where T is the temperature; full
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Fig. 4. Calculated and measured charge yields for neutron-
induced fission of 234U. The top panel represents the original
model, the middle panel has 2×∆ added to the potential energy
in the matrix locations corresponding to odd charge splits. In
the bottom panel steps corresponding to two-proton changes
in asymmetry are allowed.

details are in Refs. [1,2]. When the critical neck radius
c0 = 2.5 fm is reached the walk is terminated and the
asymmetry of the shape recorded. Each yield curve is
based on 20000 tracks. We present results for four re-
actions: thermal neutron-induced fission of 234U, 236U,
240Pu, and photon-induced fission with energies centered
around 11 MeV for 234U in Figs. 4, 5, 7, and 6 respec-
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Fig. 5. As Fig. 4, but the experimental data are for (γ,f) reac-
tions leading to E∗

≈ 8− 14 MeV; they include contamination
from fission after 1n(≈ 15%) and 2n(≈ 5%) emission[4]. The
calculations are for fission of 234U at E∗ = 11 MeV.

tively. The experimental data for the (n,f) reactions are
from Ref. [26], the (γ,f) data from Ref. [4]. The top frame
in each of the four figures is with the original model with
no pairing effect added. The middle frames are based on
BSM in the 5D potential modified according to Eq. (17).
We find little staggering in the calculated curves, although
we implemented the “standard” explanation for odd-even
staggering: for odd-odd splits the potential is on average
2 × ∆ (for zero neck radius; less in earlier stages of the
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Fig. 6. As Fig. 4 but for 236U.

fission process) higher than the potential for even splits.
But it is clear that the original formulation of the BSM
model would never be able to describe odd-even stagger-
ing, even after the addition of a pairing effect to the cal-
culated potential energy. To illustrate why let us look at
Fig. 1 and specifically at Z = 38 on the experimental
curve. Let us assume that Z = 38 is the asymmetry of
the current point on our evolving track. Because we only
consider next-neighbor gridpoints as candidate points for
the next point on the path, we have to populate Z = 39
which has a very low yield, to subsequently populate the
high-yield Z = 40 point, for example. To obtain a pro-
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Fig. 7. As Fig. 4 but for 240Pu.

nounced staggering with these model features is impossi-
ble. But as the shape evolves in the asymmetry direction
and two levels cross it is reasonable that an alternative
to breaking a pair and transferring only one proton be-
tween the evolving fragments is that a paired two-proton
configuration could be transferred in one step. We have
implemented this possibility in the BSM model by also
allowing Z − 2 and Z + 2 as next track-point candidates
(shown as circles partially filled with gray in Fig. 3). As al-
luded to above transfer reactions indicate that correlated
transfer of nucleon pairs are common see Refs. [15–17]. In
our current treatment transfer of either a paired config-
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Fig. 8. Calculated charge yield for neutron-induced fission of
240Pu in the BSM model for different assumptions about pair-
ing and next-step grid-point candidates. In the top panel no
pairing effect is added to the potential energy for odd splits, but
one or two steps in asymmetry is implemented. In the middle
panel we add a pairing effect to odd splits and permit as next
step candidates one or two grid points in asymmetry and both
of the fragment deformations. In the bottom panel we have
also allowed one or two steps in the elongation coordinate Q2.

uration or breaking of a pair and transfer of one proton
can occur. Typical excitation energies at the end of the
asymmetric tracks, see Ref. [12] are 7.7–11.6 MeV, and
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Fig. 9. Study of yield sensitivity to the magnitude of the pair-
ing ∆ and the onset of fragment pairing effects. Except for the
very small pairing effects on which the bottom panel is based
the results are quite robust and similar to the standard result
in the bottom panel in Fig. 7.

lower earlier in the shape evolution. Our consideration of
paired configurations is quite consistent with the results
of Ref. [27], where in one example at 8.4 MeV excitation
the proportion of paired configurations is 36%.

The calculated yields with transfers of correlated pairs
allowed as next track-point candidates are in the bottom
panels in Figs. 4–7. Staggering is now obvious in the cal-
culated results and in close agreement with the experi-
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mental data. In the calculated results in Figs. 4–7 it may
seem that the crucial generalization that we introduced
to describe the odd-even staggering is not the first step
we took, namely the addition of 2×∆ to the odd charge
splits, but the second step in which we permitted a change
in Z of two units, corresponding to a transfer of a paired
proton configuration. But what if we had implemented
this as a first step? We have investigated this possibility
and show in the top panel of Fig. 8 the calculated charge
yield for neutron-induced fission of 240Pu with no pairing
energy added to the odd charge splits, but with both one
and two steps in Z permitted as next candidate points on
the random-walk trajectory. There is no odd-even stag-
gering in the calculated curve which is extremely similar
to the calculated yield in the top panel in Fig. 7. It is in-
teresting to observe that although allowing both one and
two steps in Z effectively corresponds to increasing the
speed of motion in asymmetry, or equivalently increasing
the distance between grid points, there is little change in
the calculated yield curve. In the middle panel of Fig. 8
we have added (fractions of) 2∆ to the potential energies
for odd charge splits, allow one or two steps in asymmetry,
but also allow one or two steps in the fragment deforma-
tion shape variables. There is little difference compared to
the bottom panel in Fig. 7. This again shows, as was ear-
lier pointed out [2] that the calculated yield curves in the
BSM model do not depend sensitively on most changes in
the deformation grid. In the bottom panel of Fig. 8 we
have furthermore allowed one or two steps in the elonga-
tion variable Q2. In this case there is a noticeable effect
on the calculated yield. Now the calculated distribution
is slightly wider than the experimental results. In Ref. [2]
we showed that tripling the number of points in Q2 led to
a calculated distribution that was narrower than the ex-
perimentally observed one. Obviously, extreme changes in
the grid will influence the calculated results. For example
if we were to use only three grid points in the elongation
variable we would not obtain realistic yields.

Finally we study, for 240Pu, the sensitivity to variations
of the postulated shape dependence that governs the on-
set of odd-even effects on the potential energy and to the
magnitude of the pairing ∆. The results are shown in Fig.
9. The top panel shows the effect of increasing the pairing
∆ by 20% relative to our standard assumption of ∆ = 1.0
MeV. The calculated curve is little different for the result
in the bottom panel of Fig. 7. Therefore the exact choice
of ∆ is a non-issue in this first study of odd-even stagger-
ing. In larger systematic studies a well-defined prescription
should obviously be introduced. The middle and bottom
panels show the results for different forms of the shape
factor (BW − 1)k which governs the rate with which the
effect of the odd-even pairing ∆ in the fragments affects
the calculated potential energy as scission is approached.
The quantity Bw is close to 1.5 at our selected scission
configuration. Therefore, in the middle panel the factor
(BW − 1)0.5 is 0.7, so that for the odd configurations 1.4
MeV is added, less earlier in the division process. The stag-
gering here is only very slightly larger than in our standard
calculation in the bottom panel of Fig. 7 where 1.0 MeV is

added in the scission region. In the bottom panel of Fig. 9
the shape factor (BW−1)2 comes out to 0.25 so that only
0.5 MeV or less is added to the odd-odd divisions. Here
the staggering is much reduced, as might be expected.
However from these sensitivity studies we conclude that
the results are quite robust for reasonable variations of
assumptions about the onset of fragment character on the
potential energy as well as to the magnitude of the pairing
∆.

In summary we have shown that to describe odd-even
staggering in the BSM model we must add simultane-
ously two effects: (1) odd-even effects on the calculated
potential-energy surface and (2) allow transfers of corre-
lated paired proton configurations; they work together in
the development of odd-even staggering.

As future “perspectives for the next decade” we antic-
ipate that to develop more accurate descriptions we need
to

– implement the extensions we discuss here into a com-
puter model framework and calculate the full Y (Z,N)
fission-fragment yield distributions (a two-dimensional
function of neutron and proton number),

– treat from more basic principles how the number of
paired configurations decrease with excitation energy
(see Ref. [27] for a discussion) which should influence
the probability with which a point corresponding to
two-nucleon transfer is chosen as the next candidate
point on the trajectory,

– calculate the damping of shell effects based on actual
single-particle structure rather than use a parameter-
ized approach.

– understand issues related to the deformation grid. Clearly
the calculated yields do depend on the selection of the
grid. To take an obvious example, were we to have only
3 grid points in the elongation direction we would not
obtain any realistic yields. However, in the extensive
sensitivity studies in Ref. [2] it was shown that the
yields were remarkably insensitive to many types of
grid changes, as is also shown by the results of Figs. 8
and 9 above.
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25. P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys.

A492 (1989) 349.
26. M.B. Chadwick, P. Oblozinsky, M. Herman, N.M. Greene,

R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFar-
lane, G.M. Hale, R.C. Haight, S. Frankle, A.C. Kahler,
T. Kawano, R.C. Little, D.G. Madland, P. Möller, R.
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