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To determine which nuclei may exhibit shape isomerism, we use a well-benchmarked macroscopic-

microscopic model to calculate potential-energy surfaces as functions of spheroidal (�2), hexadecapole

(�4), and axial-asymmetry (�) shape coordinates for 7206 nuclei from A ¼ 31 to A ¼ 290. We analyze

these and identify the deformations and energies of all minima deeper than 0.2 MeV. These minima may

correspond to characteristic experimentally observable shape-isomeric states. Shape isomers mainly occur

in the A ¼ 80 region, the A ¼ 100 region, and in an extended region centered around 208Pb. We compare

our model to experimental results for Kr isotopes. Moreover, in a plot versus N and Z we show for each of

the 7206 nuclei the calculated number of minima. The results reveal one fairly unexplored region of shape

isomerism, which is experimentally accessible, namely the region northeast of 208
82Pb.
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The nuclear potential energy, calculated as a function of
shape parameters may have several local minima. The
lowest minimum is associated with the mass and shape
of the nucleus. Additional minima are shape isomers and in
even-even nuclei are manifested as excited 0þ states, see
Refs. [1–3]. Nuclear shape isomerism has previously been
studied both experimentally and theoretically [4,5].
However, there has been no global study of shape isomers
in a theoretical model with demonstrated predictive power
which is universal and free of parameters specifically
adjusted to shape-isomer data. Examples of previous, lim-
ited studies are in the reviews [4,5]. A typical example
using the macroscopic-microscopic approach is in [6]. A
more recent study with self-consistent Skyrme forces
shows substantial sensitivity of the results to the particular
force used [7]. Many studies have been performed without
considering axial asymmetry; however, this is essential.
Potential-energy surfaces obtained in most calculations
limited to axially symmetric shapes will, for deformed
nuclei, exhibit at least one prolate and one oblate ‘‘mini-
mum’’. However, it is well known, and discussed in, for
example [8], that most ‘‘shape isomers’’ obtained in such
restricted calculations become unstable with respect to
axial asymmetry when this constraint is removed.

In our study we consider axial asymmetry and present
for the first time a global calculation of the occurrence of
shape isomers in a model that describes nuclei from very
light (normally 16O) to the heaviest nuclei with a consistent
set of parameters for all studied properties and all nuclei.
The potential-energy surfaces are calculated in the
macroscopic-microscopic finite-range liquid-drop model
(FRLDM) with the recent 2002 parameter set [9]. It has
been very extensively benchmarked and been shown to

have excellent extrapolateability [10,11]. This is a ‘‘zero-
order’’ approximation; it shows which nuclei fulfill a nec-
essary condition for shape isomers, namely, the presence of
multiple minima in the potential-energy surfaces. More
elaborate models base a calculation of low-lying level
energies on the detailed structure of the potential and go
beyond the mean field by constructing wave functions in
some type of mixing model [12–15]. However, despite our
model simplicity, we obtain a good overlap between calcu-
lated regions of multiple minima and regions of experi-
mentally observed shape coexistence. A complete
description of the model used here and discussions of its
key results can be found in [10,11,16,17].
To locate possible shape-isomer nuclei globally we cal-

culate for 7206 nuclei from A ¼ 31 to A ¼ 290 the energy
in a three-dimensional grid in terms of three deformation
parameters, namely, quadrupole �2, hexadecapole �4, and
axial asymmetry � [8,18]. The grid is "2 ¼
ð0:0; 0:025; . . . ; 0:45Þ, � ¼ ð0:0; 2:5; . . . ; 60:0Þ, and "4 ¼
ð�0:12;�0:10; . . . ; 0:12Þ, with altogether 6175 grid points.
Our surfaces are identical to those used in our previous
studies of ground-state axial asymmetry [8,18] and some
additional details specific to the calculation of these sur-
faces can be found there. The omission of higher shape
degrees of freedom such as �3 and �6 is not expected to be
serious; they only affect a small percentage of all nuclei,
and then normally to a small degree, see Figs. 14 and 19 in
[10].
We show in Fig. 1 our results for 72

36Kr, the ‘‘poster

child’’ of nuclear shape isomers. The ground state is oblate
with "2 ¼ 0:35 and � ¼ 60, but a prolate shape iso-
mer 0.6 MeV above the ground state, with "2 ¼ 0:275 is
also present. The two minima are separated by a saddle at
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"2 ¼ 0:2 and � ¼ 30 rising about 0.8 MeV above the
prolate isomer minimum. The potential energy for 180

80Hg
in Fig. 2 exhibits four minima, whereas the surface for
186
82Pb in Fig. 3 has five minima.

Spectroscopic studies of neutron-deficient nuclei for
A� 80 give rich information about nuclear shape isomers.
Shape isomers occur due to the competition between
shapes polarized by the occupation of different orbits.
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FIG. 2 (color). Calculated potential-energy surface versus "2
and � for 180Hg. Minima are shown as black dots, optimal
saddles between pairs of minima as crossed lines. There are 4
minima. It is an interesting conjecture, which we at this point are
not able to prove generally, that the number of saddle points
needed to define optimal paths between n minima is n� 1, not
n� ðn� 1Þ=2. Thus, our immersion method only identifies 3
optimal saddle points in this surface, rather than 6.
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FIG. 1 (color). Calculated potential-energy surface for 72Kr
versus "2 and � (minimized with respect to "4 [17]). The
numbers on a blue background give the energy in MeV of the
thicker contour lines which are spaced 1 MeV apart; the spacing
between the thinner lines is 0.2 MeV. The circular arcs starting at
�2 ¼ 0:10, 0.20, 0.30, and 0.40 and the straight lines ending at
� ¼ 20 and 40 indicate the coordinate grid. To obtain a suitable
range of values we have, following standard practice, subtracted
the energy obtained for a spherical shape in the macroscopic part
of the model. The lower left tip of the pie-like plot corresponds
to a sphere (at energy 6.0 MeV). Points along the upper straight
line correspond to oblate shapes (like a discus) and those along
the lower straight line to prolate shapes (like an American
football). The energy values in the interior are calculated for
axially-asymmetric nuclear shapes (a somewhat simplified anal-
ogy is that these points correspond to shapes that result from
standing on a football). Shapes corresponding to the oblate
minimum (cyan-filled circle), the prolate minimum (green-filled
circle), the saddle separating these two minima (crossed red
lines), and to the sphere (magenta-filled triangle) are shown at
the top in the colors of the symbols at their respective locations
in the contour plot.
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FIG. 3 (color). Calculated potential-energy surface versus "2
and � for 186Pb. There are 5 minima and 4 optimal saddle points
in this surface. ‘‘Triple’’ shape isomers have been observed
experimentally in this nucleus. In Fig. 5 only 4 minima are
shown for this nucleus, because the minimum at �2 ¼ 0:35, � ¼
0, is too shallow to be counted.
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Competing are oblate (34,36,40), spherical (38,40) and
prolate (34,38,40) shell gaps. Normally the deformed
gaps ‘‘win’’ over the spherical gaps. Therefore ground
states correspond to deformed oblate or prolate shapes in

this region. Spherical minima, if they exist, are a couple of
MeV higher in energy. Because of the coexisting shell
gaps, adding or removing just a few nucleons can have a
dramatic effect on the nuclear shape in nuclei with A� 80.
The simultaneous occurrence of prolate, oblate, and spheri-
cal minima is also expected in a single nucleus for a few
favorable cases.
One of the fingerprints of shape isomers in even-even

nuclei is low-lying excited 0þ states, which are often
interpreted as a signature of a shape that is different from
the ground-state nuclear shape. In neutron-deficient Kr
isotopes, excited 0þ states are consistently observed below
Ex ¼ 1 MeV in 72Kr [3], 74Kr [19] and 76Kr [20]. In all the
isotopes, a regular rotational band is observed for spins I >
6@, while the regularity is missing in the lower angular-
momentum states I � 6@. These irregularities of the low-
energy spectra of the Kr isotopes can be understood in
terms of the prolate-oblate shape isomers, with both min-
ima exhibiting large deformations, approximately j�2j ¼
0:3–0:4. In another experiment and related theoretical
studies [14], data for 74Kr and 76Kr confirm the prolate
shape in the ground-state bands and the opposite sign of
the intrinsic Q moments of 2þ2 and 2þ3 which can be
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FIG. 4. Calculated energies and shapes (oblate or prolate) of
the nuclear ground state and of the first excited 0þ state com-
pared to experimental data. See text for further discussions.
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FIG. 5 (color). Number of minima found with deformation �2 < 0:45. Only the ground-state and isomer minima that are deeper than
0.2 MeV and with energies relative to the ground state of less than 2.0 MeV are counted.
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interpreted as the evidence of either an oblate shape or a �
vibration.

We show the calculated results for the lowest two 0þ
configurations in the Kr isotopes in Fig. 4. All prolate and
oblate minima obtained in our 3D calculation have been
further minimized in a 4D space [21]. The ground states of
70Kr and 72Kr have oblate shapes with j�2j ¼ 0:325–0:350
and the prolate minima are found at 600–800 keV higher
energies than the oblate minima. On the other hand, in 74Kr
and 76Kr, the lowest minima are prolate with j�2j � 0:350
and the oblate minima are found around 600 keV higher
than the prolate minima. The theoretical results on this
isotope sequence are remarkably consistent with the ex-
perimental observations on shape isomers in the Kr iso-
topes, except for 78Kr. For this isotope our calculated
isomer minimum is less than 0.2 MeV, deep, and should
not be counted according to our rule not to count minima
shallower than 0.2 MeV. It also has a triaxial deformation
of � ¼ 17:5. In Ref. [3] it is suggested that an extrapolation
procedure based on higher-energy members of rotational
bands can provide ‘‘unperturbed’’ energies of the 0þ states
and our results agree somewhat less well with these ener-
gies. However, sophisticated studies of shape isomers in
models beyond mean field, for example [22,23] reproduce
the oblate-prolate shifts in the ground-state deformations
less well than our model. In contrast, other studies have
been more successful [12,13].

Triple shape isomers have been observed in 186
82Pb with

energies of the two excited 0þ states at 0.532 MeV (oblate)
and 0.650 MeV (prolate). Our calculated minima at 0.8
and 1.1 MeV would correspond to these experimental
observations.

While an in-depth analysis of our complete results will
be published elsewhere, we conclude by summarizing our
results on shape isomers in Fig. 5 in which we show the
number of minima for each nuclide in terms of a contour
diagram versus N and Z. For shape isomers to be counted
their excitation energy has to be below 2 MeV, their
deformation less than "2 ¼ 0:45, and their depth larger
than 0.2 MeV. By depth we mean that the saddles between
the minimum considered and lower minima all have to be
higher than 0.2 MeV with respect to the energy of that
minimum. Other criteria are obviously possible, but we
feel that this choice would reveal isomer minima that may
have observable experimental signatures. The saddle be-
tween two minima is determined by an immersion tech-
nique described in [16] and in more extensive detail in
[17]. We find that shape isomers in nuclei that can be
studied experimentally are roughly limited to the
neutron-deficient A � 80, neutron-rich A � 100, neutron-
deficient Pb, and neutron-deficient actinide regions. Based
on our results here the little-studied neutron-deficient ac-
tinide region could be a ‘‘new continent’’ awaiting
exploration.
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[9] P. Möller, A. J. Sierk, and A. Iwamoto, Phys. Rev. Lett. 92,
072501 (2004).
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