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Barrier for cold-fusion production of superheavy elements
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We estimate the fusion-barrier height B
(two-body)
fu for approaching ions in cold-fusion reactions in a model where

the projectile deformation and quadrupole zero-point vibrational energy are taken into account. This barrier height
is defined as the barrier energy at the target and projectile separation distance where an original oblate deformation
of projectile and/or target caused by a repulsive Coulomb force turns into a large prolate deformation caused by the
attractive nuclear force as the target and projectile come closer. The instability develops before touching because
the attractive short-range nuclear force overcomes the repulsive Coulomb force and the shape-stabilizing effect
of shell structure. The shell structure of the doubly magic 208Pb target is sufficiently strong that its shape remains
very close to spherical in all cases studied here. The fusion potential for approaching ions in the two-body channel
is calculated in the macroscopic-microscopic model with the quadrupole vibrational zero-point energy obtained
in the WKB approximation. We compare our results with data from 10 experimental cold-fusion reactions and
with the Bass barriers. Differences and similarities between the Yukawa-plus-exponential model and the Bass
model are discussed. We also calculate five-dimensional potential-energy surfaces for the single compound
system and show that well-established fission and fusion valleys are both present. For heavy systems, B

(two-body)
fu

becomes lower than the fission barrier just beyond the ground state of the compound system. In the vicinity of
this transition, the optimum collision energy for formation of evaporation residues can be expected to depend in a
delicate fashion on the interplay among B

(two-body)
fu , the fusion valley, the fission barrier of the compound system,

and the one- and two-neutron separation energies S1n and S2n. We discuss these issues in detail and calculate
fission-barrier heights. Except for reactions in which the projectile is doubly magic or near doubly magic, the
calculated quantities are consistent with the observed optimal energies for evaporation-residue formation.
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I. INTRODUCTION

Heavy-ion fusion reactions have exclusively been chosen
for synthesizing new elements beyond the actinides for
several decades. Hot-fusion reactions led to the discovery
of the elements with proton numbers Z = 104, 105, and
106, whereas the elements with Z = 107–112 were first
synthesized in cold-fusion reactions at GSI mbH, Darmstadt,
Germany, during 1981–1996 [1]. Hot-fusion reactions were
subsequently used at the Joint Institute for Nuclear Research in
Dubna, Russia, in experiments designed to reach other isotopes
of these elements and elements beyond [1–3]. Evidence for
element Z = 113 was very recently observed at the RIKEN
laboratory in Tokyo. [4]. The cross section for producing trans-
actinide elements in these reactions decreases with increasing
Z, is negligible outside a narrow energy window, and depends
sensitively on the choice of target and projectile. Consequently,
substantial effort has been dedicated to developing reaction
theories that are sufficiently accurate to be useful in the design
of experiments to produce new elements or new isotopes of
known elements. However, the reaction processes leading to
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such heavy systems are so complicated that a universally
accepted model has yet to emerge. Here we focus on one part
of such a theory, namely the fusion-barrier height B

(two-body)
fu

for approaching ions in the two-body channel and its influence
on the reaction. A further discussion of this concept in relation
to the fusion barrier for the composite system B

(one-body)
fu will

be given at the beginning of the next section. The fusion
barrier is usually calculated by assuming spherical targets
and projectiles. Here we develop a more realistic model of
B

(two-body)
fu by allowing for target and projectile deformation,

and we also calculate the contribution of the shell-energies to
the self-energies of the deforming targets and projectiles. The
changes in these self-energies give rise to significant effects
on B

(two-body)
fu of the colliding system.

Both cold- and hot-fusion reactions have several features
in common while differing in other important respects. For
example, in hot-fusion reactions with actinide targets, the
compound systems are formed at high excitation energy, about
40 MeV, whereas in cold-fusion reactions with targets close to
208Pb, the compound systems in the 1n channel are typically
formed at 10–15 MeV excitation energies. Here we limit our
study to cold-fusion reactions, because with spherical targets,
in contrast to the deformed targets in hot-fusion reactions,
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they are the simpler of the two reaction mechanisms. Despite
this greater simplicity, they are still not well understood.
Furthermore, we emphasize entrance-channel effects. We feel
the system is relatively free from dissipation, at least in the
early stages on which we mainly concentrate here, but we do
consider important microscopic effects on the potential energy,
such as shell effects and quadrupole zero-point energies.

Evaporation-residue formation occurs only in a very narrow
energy window. The optimal energy is believed to be correlated
to the higher of (1) B

(two-body)
fu and (2) the sum of S1n and the

fission-barrier height [5]. Therefore, it is extremely important
to accurately model B

(two-body)
fu and its dependence on the

incoming projectile species. We previously developed a model
and associated computer code [6] to calculate the macroscopic
potential energy between two arbitrarily oriented, deformed
heavy ions based on the Yukawa-plus-exponential model for
the nuclear interaction energy [7] in addition to the standard
Coulomb term. Cold-fusion barrier heights in the two-body
channel obtained in this model for the standard deformation
choice of spherical target and projectile are consistently higher
than the optimal energy for 1n reactions. The barrier obtained
is also higher than the phenomenological Bass barrier [8].
On the other hand, the calculated barrier heights are in good
agreement with those obtained in calculations based on the
double-folding potential of Hartree-Fock-Bogolyubov density
distributions [9].

We expect that the differences between fusion-barrier
heights obtained in simple calculations and experimental data
are due to the absence in our model of some important
dynamical effects. Obvious candidates for some of these
effects are projectile and target deformations. Our calculations
show that the target and projectile shell-correction deformation
dependences give important contributions to the fusion barrier
between the target and projectile. The magnitudes of the target
and projectile shell corrections at infinity do not directly
influence this barrier; however, they strongly influence the
excitation energies of the resulting compound nuclei. Our
calculations further show that the shell effects in the target
Pb nucleus are so strong that although target deformations
at some distances decrease the macroscopic total energy of
the fusing system, the increase in shell-correction energies
more than compensates for this decrease, so that the target
nucleus remains nearly spherical. Because microscopic effects
are extremely difficult to treat in a full-blown dynamical
calculation, we do not carry out such calculations here.
However, we do go considerably beyond the simple concept
of a one-dimensional fusion barrier between spherical nuclei
in a macroscopic model and determine a multidimensional
“collision surface” for separated targets and projectiles. This
object is a fusion potential-energy surface that is a function of
target and projectile separation and of projectile deformation.
Furthermore, we take microscopic effects into account when
we calculate the collision surface by use of the macroscopic-
microscopic method. We also study the potential energy for
the composite one-body system that forms after touching
by calculating macroscopic-microscopic potential-energy sur-
faces versus five different shape coordinates for more than
3 × 106 different shapes. We show that the potential outside

and inside touching match up in a way that may increase
the probability for compound-nucleus formation. We find that
for the composite system, there exists a valley that persists
for a substantial part of the trajectory toward the compound
system. The nuclear shapes corresponding to the initial part
of this valley correspond closely to the shapes of the colliding
ions just before touching. Therefore, the designation “fusion
valley” is clearly appropriate. The valley is also stabilized by a
ridge that is several MeV high. Thus, relative to a macroscopic
picture, the probability that the trajectory will be deflected into
the fission valley is decreased [10,11].

In the next section, we specify how we calculate the effect
of projectile deformation and of quadrupole zero-point motion
on the collision surface. In Sec. III, results of numerical
calculations in this model are presented and compared with
the Bass model. In Sec. IV, we discuss the fusion-fission
potential-energy surface for the composite system. Sec. V is
devoted to a comparison of results calculated in our model
with experiments. A short summary is given in Sec. VI.

II. MODELS

In many proposed models of evaporation-residue cross
sections in heavy-ion reactions, the initial part of the reaction is
modeled in terms of a one-dimensional fusion barrier that ex-
ists between the approaching heavy ions. A few different mod-
els for this one-dimensional barrier are used. Usually only the
maximum on this curve, the fusion-barrier height, enters into
the models for the cross sections. It is often referred to as the
Coulomb barrier (height). It is assumed that the maximum of
the barrier occurs before or when the approaching ions touch.

Here we will introduce a multidimensional model for the
fusion potential-energy surface of the approaching ions. We
will also calculate multidimensional potential-energy surfaces
for the composite, single system that is formed after the
ions have come into contact. We will show in Sec. IV
that for elongated shapes, these surfaces often exhibit two
well-developed valleys of which one can be associated with
fission and the other with the cold-fusion configurations that
occur before the ions touch. Near ground-state shapes, these
two valleys disappear; and when the collision process reaches
the ground state, a compound system is formed.

Our aim here is to identify from our multidimensional
calculations a value Bfu for the fusion-barrier height that
is appropriate to use in reaction cross-section models that
describe the fusion process in terms of a single barrier-height
value. That is, it should be more appropriate to use than a value
obtained from a simple one-dimensional model of the fusion
potential.

To describe the above situation, we need to introduce some
notation. From our model of the multidimensional potential,
we will obtain a fusion-barrier height for approaching ions in
the two-body channel B

(two-body)
fu , which is already mentioned

in the Introduction. When we consider cold-fusion collisions
leading to heavier and heavier composite systems, we find
that B

(two-body)
fu becomes lower and lower and may even

become lower than the ground-state energy. For sufficiently
heavy composite systems, Bfu is therefore no longer given
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by B
(two-body)
fu but by some energy on the potential-energy

surface of the composite one-body system between the
touching configuration and the ground state, which we will
call B

(one-body)
fu . We have here consciously avoided the term

“saddle-point energy” because both B
(one-body)
fu and B

(two-body)
fu

may not correspond to a saddle point but to a point where a
ridge that stabilizes a fusion valley disappears, or even to some
other type of point on the multidimensional surface.

A. Potential energy in the two-body channel

We calculate the potential energy of colliding heavy ions
in a model where deformations of the projectile and target are
taken into account. At close range, the energetically favored
target-projectile configuration is prolate-nuclei oriented in the
tip-to-tip configuration having axial symmetry, which config-
uration has been referred to as the polar-parallel configuration
[12]. We therefore limit the relative orientations studied to this
orientation when we calculate the effect of induced target and
projectile spheroidal deformations on B

(two-body)
fu .

The potential energy of the system in the two-body
channel is described as a function of the center-of-mass
separation distance r and the target and projectile deformation
parameters εT and εP , respectively. We use the spheroidal
deformation parameter ε2 of the Nilsson perturbed-spheroid
parametrization [13]. The potential energy of the system is
the sum of the macroscopic interaction energy Eint

PT and the
macroscopic-microscopic self-energies of the projectile and
target, Eself

P and Eself
T , respectively.

Therefore, the total potential energy of the system relative
to the infinitely separated target and projectile is given by

EP+T (r, ε2T , ε2P ) = Eself
P (ε2P ) − Eself

P

(
ε

(0)
2P

) + Eself
T (ε2T )

−Eself
T

(
ε

(0)
2T

) + Eint
PT (r, ε2T , ε2P ), (1)

where ε
(0)
2T and ε

(0)
2P denote the deformation parameters of

the target and the projectile in their ground states at infinite
separation. Note that the self-energies at infinity include the
ground-state quadrupole zero-point energies as discussed in
[14].

The self-energies Eself of 208Pb, 48Ca, 64Ni, and 74Ge
relative to the self-energies of corresponding spherical liquid
drops are shown in Fig. 1 as functions of ε2. The macroscopic
part is calculated in the macroscopic FRLDM model. The
microscopic part is obtained as a sum of the shell- and
pairing-correction energies by use of the Strutinsky method
[15,16]. Full details of the model are given in Ref. [17].

The interaction energy Eint
PT consists of the nuclear in-

teraction energy, calculated in the Yukawa-plus-exponential
macroscopic model [7,14,17], and the Coulomb interaction
energy. We assume that the interaction shell-correction energy
can be neglected for the separated target and projectile. The
interaction surface and Coulomb energies are given by

Eint
S = − cs

4π2r2
0 a3

∫
VT

∫
VP

(σ

a
− 2

) e−σ/a

σ
d3rd3r ′, (2)

Eint
C =

∫
VT

∫
VP

1

σ
ρT (r)ρP (r′)d3rd3r ′, (3)

FIG. 1. Self-energies of 208Pb, 48Ca, 64Ni, and 74Ge calculated in
the macroscopic-microscopic model, as functions of the deformation
ε2. Energies are plotted relative to the self-energies of a spherical
liquid drop.

respectively, where σ = |r − r′| and ρT (r) and ρP (r) denote
the charge densities of the target and projectile at point r,
respectively. VT and VP are the regions of the volume integral
for the target and projectile, respectively. From Refs. [14,17],
we adopt

ρT = 3

4π

ZT e(
rT A

1/3
T

)3 , ρP = 3

4π

ZP e(
rP A

1/3
P

)3 , (4)

cs = [
c(T )
s c(P )

s

]1/2
, (5)

c(T )
s = as

(
1 − κsI

2
T

)
, c(P )

s = as

(
1 − κsI

2
P

)
, (6)

IT = NT − ZT

NT + ZT

, IP = NP − ZP

NP + ZP

, (7)

where as = 21.33 MeV, κs = 2.3785, a = 0.68 fm, and rT =
rP = r0 = 1.16 fm are chosen as in the readjusted FRLDM
[18] and Z and N denote the proton and neutron numbers,
respectively. We assume that the charge densities of the target
and projectile ρT and ρP are constant. The calculation of the
interaction-energy term is extensively discussed in Ref. [6].

In the case of cold-fusion reactions with 208Pb targets, where
the bombarding energy of the projectile is in the vicinity of
B

(two-body)
fu , we have, as discussed in the Introduction, calculated

that the target remains spherical because of the stabilizing
influence of the shell structure (Fig. 1). For example, we have
calculated the potential energy for the system 50Ti +208 Pb
as given by Eq. (1) as a function of the deformations of
the target and projectile at each center-of-mass separation r.
By finding a local minimum in the potential-energy surface,
we determined the energetically favorable deformations of
the target and projectile at each center-of-mass separation.
The deformations obtained are shown in Fig. 2. It is clear that
we can safely assume the target remains spherical. At large r,
the projectile shape is oblate because of Coulomb repulsion.
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FIG. 2. Target and projectile deformations as functions of the
center-of-mass distance r. At each separation r, the target and
projectile deformations correspond to the local minimum in the
potential-energy surface.

When the projectile comes closer to the target, the projectile
tends to become prolate because of the onset of the short-range
nuclear attraction. With the assumption of a spherical target,
the potential energy in the two-body channel in cold-fusion
reactions with 208Pb targets simplifies to

EP+T (r, ε2P ) = Eself
P (ε2P ) − Eself

P

(
ε

(0)
2P

) + Eint
PT (r, ε2P ).

(8)

We start the calculation of the potential energy from the
center-of-mass separation r = 15 fm, far outside the peak
in the fusion barrier in the two-body channel. The potential
energy is then calculated for a succession of separations
r = 14.98, 14.96, and 14.94 fm until we reach a separation
corresponding to touching spherical target and projectile. At
each separation, the energy is calculated for a large number of
densely spaced projectile deformations chosen so that the total
potential-energy-surface minimum of the system is always
included.

Figure 3 shows the potential energy for the 64Ni + 208Pb
system as a function of the projectile deformation for a
succession of different center-of-mass separations r. At around
r = 14.0 fm, a prolate, second minimum develops, separated
from the oblate minimum by a low saddle. Eventually the
system loses stability with respect to projectile deformation,
and in our model this is where a composite system is formed.
We now discuss how we define and determine the point of
instability and the B

(two-body)
fu associated with this instability.

Figure 4 shows in more detail the potential-energy curve
for 64Ni + 208Pb at a center-of-mass separation r = 13.54 fm.
A number of target and projectile configurations at this center-
of-mass separation are also shown. The energy of the local,
slightly oblate minimum is 239.82 MeV. For this configuration,
the vibrational zero-point energy (0.32 MeV) has become just
about equal to the highest of the two relative saddle-point
heights (in this case, the rightmost saddle point). Therefore,
stability with respect to projectile deformation is lost, and

∆
∆

→

FIG. 3. Potential-energy curves as functions of the projectile
deformation ε2 at various separations r from a spherical 208Pb target.
The solid lines show the potential energy at each center-of-mass
separation. The system becomes unstable with respect to projectile
deformation at r = 13.54 fm where the quadrupole zero-point energy
exceeds the energy of the highest of the saddle points separating the
minimum from the low-energy region at large projectile deformation
that corresponds to the touching configuration. E(cri) is the energy
of the local minimum at the critical distance where stability is lost.
The black arrow points to the fusion-barrier height in the two-body
channel B

(two-body)
fu , which is defined as B

(two-body)
fu = E(cri) − �E0,

where �E0 is the difference between the zero-point energies at
infinite separation and at the critical distance. E(cla) and E(sph)

denote the energies where the classical instability (see Sec. II B for
a definition) occurs and the spherical barrier energy, respectively.
The medium-gray and the light-gray arrows show E(cla) and E(sph),
respectively.

a composite system can form. The energy of the potential-
energy minimum at this critical separation r (cri) where the
projectile has just lost stability with respect to deformation
is designated E(cri). Other situations may also occur. At the
starting separation 15.00 fm, we identify the lowest minimum
which defines the initial projectile deformation. If a second
lower minimum develops for smaller separations, we check
at each separation if the saddle separating the two minima
is higher than the zero-point energy of the system in the
original minimum. If it is not, then the lower minimum will
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→

FIG. 4. (Color online) Potential-energy curve as a function of
the projectile deformation ε2 at the critical distance r = 13.54 fm.
System shape configurations at representative deformations are also
plotted. For this particular center-of-mass separation, the projectile
and target are in contact at ε2 = 0.5. The thin, solid horizontal line
denotes the zero-point energy calculated in the WKB approximation.
The local energy minimum at the critical distance is E(cri).

correspond to a new system configuration. We then check,
for this separation, if the new zero-point energy is higher
than the maximum between this local minimum and the new
minimum near touching. In that case, the system forms a
composite system, otherwise it does not. Because the curves
plotted do not contain the zero-point energy contributions to
the self-energies, B(two-body)

fu is not exactly E(cri). The definition
of B

(two-body)
fu and the calculation of the zero-point energy are

discussed in the next subsection.

B. Definition of fusion-barrier height in the two-body channel

Because the potential energy shown in Fig. 3 does not
contain the zero-point energies in the self-energy terms, the
fusion-barrier height B

(two-body)
fu is given by

B
(two-body)
fu = E(cri) − �E0, (9)

where �E0 given by

�E0 = E
(∞)
0 − E

(cri)
0 (10)

is the difference between the projectile zero-point energies at
infinity and at the critical distance.

We calculate the zero-point energy in the WKB approxi-
mation, and determine whether the minimum is sufficiently
deep that a bound state exists. In the WKB approximation, we
obtain the zero-point energy E0 by solving

2
∫ a

b

√
2B(ε2)[E0 − V (ε2)] dε = πh̄, (11)

where a and b are the upper and lower limits of the positive
range of the integrand, V denotes the potential energy, and B
is the inertial mass with respect to ε2 deformations.

The quantity B is obtained from B = B ir/K2, where B ir

is the hydrodynamical mass in the irrotational-flow approx-
imation and K = 0.33 is a factor determined to optimally
reproduce spontaneous-fission half-lives for actinide nuclei
[14,19]. In the irrotational-flow approximation, the mass B ir

is given by

B ir(ε2) = B ir(0)

(
1 − 1

3
ε2

2 − 2

27
ε2

3

)− 4
3 1 + 2

9ε2
2

(
1 − 2

3ε2
)2 ,

(12)

where B ir(0) denotes the irrotational mass of the spherical
nucleus, which is chosen as B ir(0) = 0.004632A5/3 h̄2 MeV−1

from Ref. [20].
In the 64Ni + 208Pb system, r = 13.54 fm corresponds to

the critical distance where the zero-point energy level of the
projectile equals the saddle-point energy. At this distance
the energy E(cri) = 239.82 MeV and �E0 = 0.11 MeV.
Therefore, the fusion barrier in two-body channel B

(two-body)
fu is

239.71 MeV.
To show the effect of the zero-point vibrations and the

deformation of the projectile, we also estimate the spherical
barrier B

(sph)
fu without any target and projectile deformation.

This spherical barrier B
(sph)
fu , indicated by a light gray arrow

in Fig. 3, is 251.35 MeV. Thus, we find that B
(two-body)
fu is

lower than B
(sph)
fu by 11.64 MeV. To specifically establish the

influence of considering the projectile spheroidal vibrational
zero-point energies, we also calculate where the instability
with respect to projectile deformation occurs if we ignore the
zero-point energy (or equivalently assume it is zero). This
situation we call “classical instability,” and it occurs at r =
13.20 fm at an energy E(cla) = 243.90 MeV, shown by the
darker gray arrow in Fig. 3.

III. FUSION POTENTIAL IN THE TWO-BODY CHANNEL

A. Calculated fusion-barrier height in the two-body channel

We calculate B
(two-body)
fu for cold-fusion reactions with 48Ca,

50Ti, 54Cr, 58Fe, 62Ni, 64Ni, 70Zn, 74Ge, and 76Ge projectiles
incident on 208Pb targets. We also determine B

(two-body)
fu in cold-

fusion reactions with 58Fe, 64Ni, and 76Ge projectiles incident
on 209Bi targets. We assume that 209Bi remains spherical in
shape because of its similarity to 208Pb, something we have
also checked in actual three-dimensional calculations. In these
calculations, the fusion potential is determined for successively
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TABLE I. Calculated fusion-barrier heights B
(two-body)
fu for various systems. For comparison, we also tabulate the Bass barrier B

(Bass)
fu

calculated with parameters Bass80 [8] and the spherical barrier B
(sph)
fu . E(cla) is the energy where the classical instability occurs. E(cri) is the

energy at the critical distance of approach, see text. �E0 is the difference between the projectile zero-point energies at infinite separation
and at the critical distance. B

(two-body)
fu − EGS gives the fusion-barrier height measured from the ground state of the compound nucleus. EGS is

obtained from [17].

System B
(Bass)
fu B

(sph)
fu E(cla) E(cri) �E0 B

(two-body)
fu B

(two-body)
fu −EGS

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

48Ca + 208Pb → 256No 176.12 182.65 181.10 180.02 0.34 179.68 26.08
50Ti + 208Pb → 258Rf 193.90 201.04 197.21 195.28 0.26 195.03 24.09
54Cr + 208Pb → 262Sg 210.42 218.31 211.00 209.26 −0.25 209.51 21.08
58Fe + 208Pb → 266Hs 226.82 235.46 227.65 224.28 0.40 223.89 18.43
62Ni + 208Pb → 270Ds 243.11 252.52 245.33 239.59 −0.18 239.77 16.61
64Ni + 208Pb → 272Ds 241.88 251.35 243.90 239.82 0.11 239.71 15.08
70Zn + 208Pb → 278112 256.83 267.14 257.91 253.90 0.22 253.68 8.71
74Ge + 208Pb → 282114 272.88 283.96 281.26 271.47 −0.34 271.81 10.68
76Ge + 208Pb → 284114 271.68 282.85 276.88 270.62 0.24 270.38 7.31
58Fe + 209Bi → 267Mt 229.57 238.28 230.27 226.86 0.38 226.48 17.35
64Ni + 209Bi → 273111 244.81 254.35 246.72 242.59 0.10 242.49 13.85
70Zn + 209Bi → 279113 259.95 270.34 260.89 256.97 0.24 256.74 7.89

decreasing values of the center-of-mass separation r for r =
15.00, 14.98, . . . , r (cri) where r is in units of fm. The critical
distance r (cri) and the fusion potential at r (cri) are determined
as discussed in the previous section.

Table I shows B
(two-body)
fu for various systems. To show the

effect of deformations and vibrations, the spherical barrier
height B

(sph)
fu is also tabulated. Because the Bass model is

commonly used to model heavy-ion fusion barriers, we include
the Bass barriers heights B

(Bass)
fu in Table I so that we can

compare them to our results. The differences between our
B

(two-body)
fu and Bass barrier heights are about ±3.5 MeV. The

definitions of the tabulated quantities are further discussed in
the table caption and in the previous section.

Figure 5 shows the difference between B
(two-body)
fu and the

spherical barrier height B
(sph)
fu for each of the studied systems.

We see that B
(two-body)
fu is always lower than the spherical

barrier height. To show the effect of the zero-point vibrations,
the differences between the spherical barrier height and the
critical energy at the classical instability are also presented.
Except for reactions with the three very lightest projectiles
near Ca, B

(two-body)
fu are consistently lower than B

(sph)
fu by about

13 MeV. For the reactions with 48Ca and 50Ti, the effect of
vibrations and deformations is relatively small compared to the
other systems, possibly because of the doubly magic or near
doubly magic nature of the projectiles. However, despite the
large stiffness of 48Ca, B

(two-body)
fu is lower than B

(sph)
fu by about

3 MeV. This result shows the importance of deformation effects
in the two-body channel, even when the projectile is fairly stiff
as a result of shell effects.

For 74Ge and 76Ge, the difference between B
(two-body)
fu and

the energy at the classical instability is much larger than for
other systems. Although the energy at the classical instability
for 74Ge is lower than the spherical barrier height by only
2 MeV, B(two-body)

fu for 74Ge is lower than the spherical barrier by

about 12 MeV. This result comes from the self-energy of 74Ge,
which is shown as a function of deformation in Fig. 1. Two
minima are separated by a local saddle centered around ε2 = 0.
The oblate minimum is somewhat deeper and stiffer than the
prolate minimum. When 74Ge approaches the target, 74Ge
becomes oblate in shape because of the increasing Coulomb
repulsion. The oblate shape minimum in the self-energy
enhances the stability against prolate deformations. Thus, the
critical energy at the classical instability becomes relatively
high. However, the vanishing of the zero-point energy mainly

FIG. 5. Energies of various fusion-barrier quantities relative to
the spherical barriers for several different cold-fusion reactions. The
solid squares denote B

(two-body)
fu relative to the spherical barrier height

B
(sph)
fu . The energies E(cla) and E(cri) relative to B

(sph)
fu are denoted by

open circles and open squares, respectively.
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depends on the height of the saddle point in the fusion potential
in the two-body channel. The change of the height of the
saddle point is related to the curvature of the self-energy at
large prolate deformations. The curvature around ε2 = 0.3 for
74Ge is very similar to other systems. Therefore, B(two-body)

fu for
74Ge roughly decreases to the same extent as in other systems.
These results indicate that both deformations and zero-point
vibrations are very important in the two-body channel.

B. Comparison with Bass model results

Because the Bass model [8] has been extensively used to
estimate fusion-barrier heights in heavy-ion reactions, with
results similar to those obtained in our current model, cf.
Fig. 9, we compare the main features of the respective models.
We calculate the Bass barriers with the parameters from
Ref. [8]. For 48Ca and 50Ti, the Bass model overestimates
the peak energy of the 1n reaction, just as our model does.
For projectiles heavier than 54Cr, B

(two-body)
fu and Bass barrier

height become closer to the peak energy of the 1n reactions.
There are no large differences between B

(two-body)
fu and the Bass

barrier heights over the range of reactions studied here. To
learn why, we compare some major aspects of the Bass model
and our calculation. The nuclear potential part VN in the Bass
model is given by

V
(Bass)
N (s) = − R1R2

R1 + R2

[
C1 exp

(
s

d1

)
+ C2 exp

(
s

d2

)]−1

,

(13)

where s denotes the distance between the surfaces of the
projectile and the target. In Ref. [8] we find that C1 =
0.0061 MeV−1 fm, d1 = 0.65 fm, C2 = 0.33 MeV−1 fm, d2 =
3.3 fm, and the nuclear radius Ri = 1.16A1/3 − 1.39A−1/3 fm,
where A is the nucleon number. When the projectile and
target are at large separation, in the Bass model, V

(Bass)
N is

proportional to exp(−s/d1). On the other hand, in the case of
separated spherical nuclei, Eq. (2) can be approximated [7] by

V
(YPE)
N (s) ∼ − acsR1R2

r2
0 (R1 + R2)

(
2 + s

a

)
exp

(
− s

a

)
. (14)

In Eq. (14), the middle factor (2 + s/a) is due to the
saturating condition of the nuclear force. At large center-
of-mass separation, V

(YPE)
N is determined mainly by the

factor exp(−s/a). Thus, it seems that d1 in the Bass model
corresponds to the effective range a of the folding function
in the Yukawa-plus-exponential (YPE) model. The value 0.65
for d1 is also consistent with the commonly used parameter of
the folding function. However, when the projectile and target
approach each other, the term C2 exp(s/d2) in the Bass model
becomes dominant. This corresponds to a large increase in
the effective range of the folding function in the YPE model.
Although the effective range in the YPE model also increases
by the saturating property, this effect is much smaller than
the effective range in the Bass model. The large change in
the effective range in the Bass model cannot be explained
as due only to the saturating condition of the nuclear force.
We suggest that in the Bass model, the effects of the zero-
point vibration and the deformation are effectively simulated

through the term C2 exp(s/d2), but at a considerably more
phenomenological level than in our treatment of these effects.
In our treatment, no additional parameters or new parameter
values are introduced relative to our standard FRLDM nuclear
mass and fission-barrier model [17,18]; it is just applied in a
straightforward way to fusion-barrier calculations.

IV. COMPOSITE-SYSTEM FUSION-FISSION POTENTIAL

The model for the two-body-channel potential presented in
the previous section shows that the shape configuration when
the touching configuration is reached consists of a projectile
with a large prolate deformation and an almost spherical
target. Inside touching, we can study the potential energy
surface in our macroscopic-microscopic model for all shapes
accessible to our three-quadratic-surface parametrization. This
means that we will obtain a potential-energy surface that is
appropriate to both fission and fusion. The highest fission
saddle point for these heavy composite systems corresponds to
shapes that are just a little more deformed than the ground state,
and this saddle point is calculated in the ε parametrization, as
mentioned above. The height of this saddle point influences
the competition between fission and neutron evaporation once
the compound system is formed. Also, when B

(two-body)
fu is

lower than this saddle height, this saddle point is usually the
maximum of the fusion barrier, which was defined as Bfu in
Sec. II. For a few systems in the transition region between
these two limiting situations, one can expect that Bfu instead
corresponds to some point on the ridge between the fusion and
fission valleys. In these cases, however, it may be impossible
to provide a realistic model of the evaporation-residue cross
section without detailed dynamical modeling of microscopic
effects along the trajectory inside touching. For shapes more
deformed than the inner saddle point, our calculated five-
dimensional potential-energy surfaces present a structure that
includes both a fission valley and a fusion valley. We find that
the shape configuration of the single system in the fusion valley
bears a very strong resemblance to the target and projectile
shapes just at touching.

The five-dimensional macroscopic-microscopic potential-
energy surfaces for composite one-body systems reached in
cold-fusion heavy-ion reactions are calculated and analyzed
using the same techniques as introduced previously in studies
of actinide fission. In particular, we calculate the potential
energy as a function of five nuclear-shape coordinates: 15
points each in the neck diameter and left and right fragment
deformations, 35 points in the mass asymmetry, and 33 points
in the nuclear elongation. This leads to a space of 3 898 125
grid points. However, as explained elsewhere [21] some
grid-point coordinate values do not correspond to physically
realizable shapes; therefore, the actual number of grid points
considered is 3 594 915. Compared to our previous fission
studies, we have increased the number of mass-asymmetry
values from 20 to 35. The extension to such large mass
asymmetries means that the expected cold-fusion channel
near mass division 208/70 for the compound system 278112
is included in our calculated potential-energy surface. The
distance between the grid points in the mass-asymmetry
coordinate is 2.78 mass units for this compound system. More
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FIG. 6. (Color online) Structures in the calculated five-
dimensional potential-energy surface of 266Hs. The lower curve
corresponds to the fission barrier. For large values of Q2, an additional
well-defined valley occurs, which is stabilized with respect to the
fission valley by the ridge shown in the top curve. Two shapes in
the fission valley and one shape in the additional valley are shown.
The shapes in the fission valley indicate that a transition to asymmetric
shapes takes place around Q2 = 43. The shape in the other valley
corresponds to MH/ML = 197/70. The position of the vertical thin
arrow on the horizontal axis indicates the value of Q2 for the touching
spherical target and projectile.

generally, for a compound nucleus with mass A the grid-point
distance in the mass-asymmetry coordinate is A/100.

In Figs. 6–8, we show the result of a water-immersion
analysis of the calculated five-dimensional deformation spaces
for composite one-body systems corresponding to 266Hs,
272Ds, and 284114. The results are plotted versus the charge
quadrupole moment Q2 of a 240Pu nucleus of the same
shape as the nucleus being considered, so that the nuclear
size and charge effects are eliminated. For each system, we
have identified a fission barrier, which only exists because of
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FIG. 7. (Color online) Same as Fig. 6, but for 272Ds. The shape
in the fission valley is symmetric, and the shape in the other valley
corresponds to MH/ML = 201/71.
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FIG. 8. (Color online) Same as Fig. 6, but for 284114. The shape
in the fission valley is symmetric, and the shape in the other valley
corresponds to MH/ML = 213/71.

large, negative microscopic corrections at the ground state,
giving rise to a fission barrier that is high enough that
these nuclei survive for a sufficiently long time to permit
experimental study. For larger deformations, all three figures
also show a second valley that our water-immersion analysis
has identified, as well as the ridge which stabilizes this
valley with respect to the fission valley. The asymmetry of
shapes in the secondary valley as well as their deformations
strongly overlap with the target and projectile mass ratios and
deformations in the two-body channel. A little loosely we
could say that the colliding projectile and target after touching
will slip into this valley as a hand slips into a glove. Of course,
the energy of this valley is often 10 MeV or more lower than
the energy of the fusion collision potential-energy surface
saddle discussed before. However, this is mainly because
the composite one-body shapes we study have developed a
substantial neck, which significantly lowers the energy. This
appearance of the potential-energy surface is very different
from that obtained in a macroscopic multidimensional picture
in which these systems just after touching find themselves on
a surface that slopes steeply sideways relative to the incident
direction. These systems colliding “at the Coulomb barrier”
would immediately be deflected to the fission valley and
reseparation [10,22,23]. Thus, we have identified an additional
effect that favors cold fusion: microscopic effects in the
composite one-body system potential-energy surface create
a shell-stabilized valley that is basically a continuation of
the two-body-channel configuration that has developed at the
critical distance. It remains to deduce the effect of how relative
differences between systems in the calculated barriers and
ridges, and associated dynamical effects such as damping,
affect the evaporation-residue cross sections.

V. COMPARISON WITH EXPERIMENTS

In Fig. 9, we compare B
(two-body)
fu , denoted by black

arrows, to experimental evaporation-residue cross sections.
The spherical barrier heights and the energies at the classical
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FIG. 9. (Color online) Calculated barrier heights compared to experimental data. The experimental data for 48Ca + 208Pb are taken from
Refs. [24–26]. The experimental data for 50Ti, 54Cr, 58Fe, 62Ni, 64Ni, 70Zn + 208Pb and 58Fe, 64Ni + 209Bi are from Refs. [1,27,28]. The solid
squares denote the measured evaporation-residue cross section for the 1n-reaction branch. The fusion-barrier heights B

(two-body)
fu are shown as

black arrows. B
(sph)
fu and E(cri) are shown as light-gray and darker-gray arrows, respectively. As a comparison, the Bass barrier heights B

(Bass)
fu

are shown as open arrows.

instability are also shown as medium-gray and light-gray
arrows, respectively. The solid points denote the excitation
function for the evaporation-residue formation for 10 reactions
for which experimental data are available from GSI [1,27,28],
Dubna [24–26], and RIKEN [4,30,31].

From Fig. 9, it is seen that the calculated fusion-barrier
heights in the two-body channel B

(two-body)
fu are considerably

higher than the peaks of the 1n channel for the reactions with
48Ca, 50Ti, and 54Cr. With increasing projectile mass number,
the calculated B

(two-body)
fu becomes close to the peak energy

of the 1n reactions. Although the data are less complete for
these heavy systems, our calculated barrier heights B

(two-body)
fu

appear to have energies similar to those at the peak of the 1n

reaction for 58Fe, 62Ni, 64Ni, and 70Zn projectiles incident on
208Pb targets, to within a few MeV or so.

When we discuss the systematics of the evaporation-residue
cross section, we need to recall that it depends not only on

B
(two-body)
fu but also on B

(one-body)
fu and dynamics after touching

and on the survival probability of the compound system, if
it forms. The compound-nucleus formation probability will
be affected by the fission saddle just beyond the ground-state
minimum, particularly if it is higher than B

(two-body)
fu , as is the

case for the heavier of the systems we study here. The height
and length or persistence of the ridge that inside touching
separates the two-body-channel fusionlike valley from the
fission valley will also affect the compound-nucleus formation
cross section. If formed, the compound-nucleus survival prob-
ability is determined by the competition between the fission
and neutron-evaporation probabilities. In addition, whether 1n

or 2n channels become favorable roughly correlates with the
sum of the fission-barrier height and the 1n-neutron separation
energy Bfi + S1n and the 2n-separation energy S2n [5]. For the
systems presented in Table I, we obtain evidence that most
Bfi + S1n are lower than S2n. Thus, we expect that the 1n
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•

FIG. 10. Fusion-barrier height B
(two-body)
fu compared to the

compound-system fission-barrier height [29]. Both barrier heights
are given relative to the compound-system ground-state energy. We
also show the energy of the peak of the 1n cross section and the
sum Bfi + S1n of the fission-barrier height and the 1n separation
energy. Although we show only the fission-barrier heights for even-
even nuclei for simplicity, Bfi + S1n for odd-odd nuclei follows the
general trend of these even-even systems and is consistent with the
experimental data. The peak energy of the 1n cross section for 270110
and 279113 is not available since there is only one data point for a
fixed energy for each. In these cases, we identified the energy of the
observed 1n channel as the peak energy.

channel is dominant at energies below Bfi + S1n. Since the
fusion cross section rapidly decreases below B

(two-body)
fu and

the energy corresponding to maximum survival probability
is related to Bfi + S1n, an analysis of the relation between
B

(two-body)
fu , the sum Bfi + S1n, and the most favorable collision

energy is essential. The analysis may be most transparent if we
give all energies relative to the ground state of the compound
system.

We show these three quantities in Fig. 10. The solid
squares denote B

(two-body)
fu . The open diamonds denote the

experimentally determined energy of the maximum in the 1n

cross section. The open diamonds and the open diamonds with
superimposed dots and crosses denote the data from Dubna,
GSI, and RIKEN, respectively. For these heavy compound
systems, the highest saddle point on the fission barrier occurs
just beyond the ground state. Its height relative to the ground
state has been calculated versus three deformation coordi-
nates, ε2, ε4, and γ . The calculation explores the full three-
dimensional space and determines the saddle-point location in
this space by a water-immersion technique. The corresponding
fission-barrier heights are denoted by open squares connected
by a thin solid line. Bfi + S1n is represented by a dotted
line. The reaction Q value and the 1n separation energy are
taken from [17]. Figure 10 clearly shows that our calculated
fusion-barrier heights B

(two-body)
fu decrease linearly as the value

of the compound-nucleus proton-number Z increases. The

fusion-barrier heights B
(two-body)
fu are lower than Bfi + S1n in

the systems heavier than Z = 110. Thus, we expect for the
heavy systems the optimum collision energy in the 1n channel
will be determined by the sum of the saddle-point height
Bfi just beyond the ground state and S1n. It appears that
the experimental data of RIKEN denoted by open diamonds
with superimposed crosses are in very good agreement with
Bfi + S1n. Since for Z � 110, the calculated barrier heights
B

(two-body)
fu become comparable to Bfi + S1n, our calculated

results are consistent with the observed energy at the maximum
of the 1n-channel cross section.

Since our barrier heights B
(two-body)
fu are considerably higher

than Bfi + S1n for 48Ca, 50Ti, and 54Cr projectiles (Fig. 10), one
would expect that the 1n channel is strongly suppressed for
these three systems. In fact, because the 1n-channel excitation
function is asymmetric in shape for the systems 48Ca and 50Ti
in Fig. 9, it seems that an effect of the two-body channel is
seen. However, to explain the very low energy of the 1n peaks,
a subbarrier enhancement below B

(two-body)
fu or a decrease of

B
(two-body)
fu over and above what we calculate from deformation

effects is needed. In heavy-ion reactions with 208Pb targets,
it is well known that subbarrier enhancement of the fusion
cross section occurs. In coupled-channel calculations, the
mechanism is that the low-lying 3− and 5− states of the
208Pb target [32] affect the barrier distribution. The effect
lowers the barrier by several MeV. If we assume that our
calculated B

(two-body)
fu is the average energy of the barrier

distribution, the most favorable energy for the 1n reaction
would be lowered by approximately this amount. However,
even if we take into account this coupled-channel effect, it
is very difficult to explain the very low energy of the peak
of the 1n cross section from our current results. To explain
the experimental results, we would need to further decrease
our calculated B

(two-body)
fu by 3–5 MeV from their present

values. If we further decrease all B
(two-body)
fu by 3–5 MeV,

in all heavy systems, then the peak energy of 1n channel
is higher than B

(two-body)
fu for all the studied systems. Then

the evaporation-residue cross section would be determined
by the sum Bfi + S1n, which is actually consistent with the
observed energies of the peaks of the 1n evaporation-residue
cross sections.

One possible mechanism for the decreasing B
(two-body)
fu is a

change in the nuclear radius r0 or the diffuseness a parameters
in the two-body channel because of some quantum effect not
taken into account in the macroscopic part of the FRLDM used
to calculate the interaction energy. The surface energy and the
corresponding nuclear-interaction energy in massive systems
are very sensitive to these parameters. For example, if we
change the radius parameter r0 from 1.16 to 1.2 fm, the spher-
ical barrier for 48Ca incident on 208Pb decreases by 5.9 MeV.
We do not have a sufficiently tested microscopic model to

institute such changes of radius and diffuseness parameters
on a case-by-case basis. Alternatively, one could consider a
global change of the radius and diffuseness parameters in the
macroscopic FRLDM. However, since these parameters are
optimized globally, in particular to nuclear masses and fission
barriers within the framework of the FRLDM, one would
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need to perform global studies involving the systematics of
nuclear masses and other quantities before a change of these
parameters could be instituted with confidence.

VI. SUMMARY

We have pointed out that “standard” models of the barrier in
heavy-ion reactions that assume that the target and projectile
remain spherical during the collision and in which the barrier
can be described as a sum of a simple Coulomb interaction
and a short-range nuclear interaction are too simplistic to give
results that are sufficiently accurate to provide insight into the
physics of cold-fusion reactions leading to the formation of
elements at the end of the periodic system.

To obtain a more realistic model, we have argued that it
is necessary also to consider deformation of the target and
projectile during the collision process. For systems of interest,
we have calculated adiabatic, static heavy-ion macroscopic-
microscopic “collision” potential-energy surfaces versus sep-
aration and target and projectile deformations. In this model
the potential energy is calculated as a sum of the Coulomb and
short-range nuclear interaction energies between spheroidal
targets and projectiles, oriented tip-to-tip. The potential-energy
model also contains terms that account for the deformation
dependence of the macroscopic-microscopic self-energies of
the deformed targets and projectiles relative to their self-
energies at infinite separation. In cold-fusion reactions, the
target remains spherical because of the strong stabilizing effect
of doubly or near doubly magic proton and neutron numbers in
the Pb or Bi target. The effect of deformations in the projectile
lowers the fusion barrier in the two-body channel B

(two-body)
fu

by about 3 MeV in the cold-fusion reaction leading to 256No
and by up to almost 15 MeV in the reaction leading to 277112,
relative to the barrier in the macroscopic spherical model.
The special configuration of a strongly deformed projectile
and near spherical target is shown to resemble well the
“fusion-valley” configuration in the potential-energy surface
of the one-body composite system. The strongly overlapping
configurations for two-body and one-body systems at near
touching is supposed to be a typical feature of these reaction
systems, which would favor a cold-fusion reaction.

For cold-fusion reactions with projectiles near 48Ca, our
calculated barrier heights B

(two-body)
fu are still higher than

what is experimentally indicated by 5–10 MeV. We feel
this is due to additional microscopic or dynamical effects
beyond the deformation and shell effects considered here.
The nuclear radius and diffuseness might not follow the
simple macroscopic prescriptions we use here. Unfortunately,
microscopic self-consistent calculations with different forces
[33] obtain very different results for the radius and diffuseness
parameters for different, equally plausible microscopic forces,
so little guidance can currently be obtained from these studies.
However, it is our hope that because we have here introduced
an improved fusion-barrier model, the nature of the remaining
sources of deviation may become more apparent.
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[17] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swicatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
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