JEFF-3.1 W-186
resonance total cross section
JEFF-3.1 W-186
resonance total cross section

Energy (MeV)

Cross section (barns)

total
JEFF-3.1 W-186
resonance total cross section

Cross section (barns)

Energy (MeV)
JEFF-3.1 W-186
resonance total cross section

Energy (MeV)

Cross section (barns)

total
JEFF-3.1 W-186 resonance total cross section

Energy (MeV)

Cross section (barns)

total
JEFF-3.1 W-186
resonance absorption cross sections

Energy (MeV)

Cross section (barns)

capture
JEFF-3.1 W-186
resonance absorption cross sections

Energy (MeV)

Cross section (barns)

capture
JEFF-3.1 W-186
resonance absorption cross sections
JEFF-3.1 W-186
resonance absorption cross sections

Cross section (barns) vs. Energy (MeV)
JEFF-3.1 W-186
resonance absorption cross sections

![Graph showing resonance absorption cross sections for W-186.

- **Y-axis:** Cross section (barns)
- **X-axis:** Energy (MeV)

The graph displays the cross section in units of barns on a logarithmic scale against energy in MeV on another logarithmic scale. The curve represents the capture cross section, showing a gradual decrease as energy increases.}
JEFF-3.1 W-186
Heating

Heating (MeV/reaction)

Energy (MeV)
JEFF-3.1 W-186
Non-threshold reactions

Energy (MeV)

Cross section (barns)

(n,gma)
JEFF-3.1 W-186
Principal cross sections

Energy (MeV)

Cross section (barns)

- total
- absorption
- elastic
- gamma production

Energy (MeV)
JEFF-3.1 W-186
Heating

Heating (MeV/reaction)

Energy (MeV)
JEFF-3.1 W-186
Damage

Energy (MeV) vs. Damage (MeV-barns)

- Energy (MeV) on the x-axis, ranging from 0 to 20.
- Damage (MeV-barns) on the y-axis, ranging from 0 to 2200.*10^-3.

The line graph shows the damage as a function of energy. The damage increases with increasing energy.
JEFF-3.1 W-186
Non-threshold reactions

Cross section (barns)

Energy (MeV)
JEFF-3.1 W-186
Threshold reactions

Cross section (barns)

Energy (MeV)
JEFF-3.1 W-186
Threshold reactions

Cross section (barns) vs Energy (MeV)

- (n,p)
- (n,d)
- (n,a)
JEFF-3.1 W-186
Threshold reactions

Cross section (barns)

Energy (MeV)

(n,xp)
(n,xd)
(n,xa)
JEFF-3.1 W-186
angular distribution for elastic
JEFF-3.1 W-186
angular distribution for \((n,n^*1)\)
JEFF-3.1 W-186
angular distribution for (n,n*2)
JEFF-3.1 W-186
angular distribution for \((n,n^*3)\)
JEFF-3.1 W-186
angular distribution for (n,n*4)
JEFF-3.1 W-186
angular distribution for \((n,n^*5)\)
JEFF-3.1 W-186
angular distribution for (n,n*6)
JEFF-3.1 W-186
angular distribution for (n,n*7)
JEFF-3.1 W-186
angular distribution for (n,n*8)
JEFF-3.1 W-186
angular distribution for (n,n*9)
JEFF-3.1 W-186
angular distribution for \((n,n^*10)\)
JEFF-3.1 W-186
angular distribution for (n,n*11)
JEFF-3.1 W-186
angular distribution for (n,n*12)
JEFF-3.1 W-186
Neutron emission for (n,2n)
JEFF-3.1 W-186
Neutron emission for (n,3n)
JEFF-3.1 W-186
Neutron emission for (n,n*)a
JEFF-3.1 W-186
Neutron emission for \((n,n^*c)\)
Photon emission for \((n,n^*a)\)
JEFF-3.1 W-186
Photon emission for (n,gma)
JEFF-3.1 W-186
Photon emission for (n,a)
JEFF-3.1 W-186
Photon emission for nonelastic
JEFF-3.1 W-186
14 MeV photon spectrum

Gamma Energy (MeV) vs. Gamma Prod (barns/MeV)

- The x-axis represents Gamma Energy (MeV), ranging from 0 to 10 MeV.
- The y-axis represents Gamma Prod (barns/MeV), ranging from 10^{-3} to 10^1 on a log scale.

The graph shows a declining trend in Gamma Prod as the Gamma Energy increases.
JEFF-3.1 W-186
Particle heating contributions

Energy (MeV)
MeV/collision

protons
deuterons
alphas

Energy (MeV)
JEFF-3.1 W-186
Particle production cross sections

Energy (MeV) vs. Cross section (barns)

- Protons
- Deuterons
- Alphas
JEFF-3.1 W-186
protons from (n,xp)
JEFF-3.1 W-186
deuterons from (n,xd)
JEFF-3.1 W-186
alphas from (n,xa)