ENDF/B-VII.1 FE-57
resonance total cross section

![Graph showing total cross section vs energy in MeV, with logarithmic scales on both axes. The graph displays several sharp spikes and dips indicative of resonance structures.](image-url)
ENDF/B-VII.1 FE-57 resonance total cross section

Energy (MeV) vs. Cross section (barns) plot.
ENDF/B-VII.1 FE-57
resonance total cross section

Cross section (barns)

Energy (MeV)
ENDF/B-VII.1 FE-57
resonance total cross section

Energy (MeV)

Cross section (barns)

total
ENDF/B-VII.1 FE-57
resonance absorption cross sections

Energy (MeV)

Cross section (barns)

capture

10^{-3}

10^{-2}

10^{-1}

10^{0}

10^{1}

Energy (MeV)
ENDF/B-VII.1 FE-57
resonance absorption cross sections

Cross section (barns)

Energy (MeV)
ENDF/B-VII.1 FE-57 resonance absorption cross sections

Energy (MeV) vs. Cross section (barns)

- Capture cross section

The plot shows the cross section as a function of energy, with energy ranging from 10^{-1} to 10^0 MeV and cross section ranging from 10^{-4} to 10^1 barns.
ENDF/B-VII.1 FE-57
resonance absorption cross sections

Capture cross section as a function of energy (MeV). The cross section decreases as energy increases, with a significant drop in the energy range of 10^0 to 10^1 MeV.
ENDF/B-VII.1 FE-57 Damage

Energy (MeV) vs. Damage (MeV-barns)

- The graph plots damage (in MeV-barns) against energy (in MeV).
- The data shows a decreasing trend in damage as energy increases, with specific peaks at certain energy levels.
- The damage is measured on a logarithmic scale ranging from 10^{-11} to 10^1.
- The energy range is from 10^{-11} to 10^1.

Graph: Line graph showing the relationship between energy and damage with specific features at different energy levels.
ENDF/B-VII.1 FE-57
Non-threshold reactions

![Graph showing cross section vs. energy for the reaction (n,gma). The x-axis represents energy in MeV, and the y-axis represents cross section in barns. The graph shows a decrease in cross section with increasing energy, with a peak around 10 MeV.]
ENDF/B-VII.1 FE-57
Threshold reactions

Cross section (barns)

Energy (MeV)
ENDF/B-VII.1 FE-57 angular distribution for elastic
ENDF/B-VII.1 FE-57
Neutron emission for (n,x)
ENDF/B-VII.1 FE-57
Neutron emission for (n,2n)
ENDF/B-VII.1 FE-57
Neutron emission for \((n,n^*)a\)
ENDF/B-VII.1 FE-57
Neutron emission for (n,n*)p
ENDF/B-VII.1 FE-57
Neutron emission for (n,n*c)
ENDF/B-VII.1 FE-57
Photon emission for (n,gma)
ENDF/B-VII.1 FE-57
Photon emission for (n,x)
ENDF/B-VII.1 FE-57
Photon emission for (n,n*)a
ENDF/B-VII.1 FE-57
Photon emission for (n,n*)p
ENDF/B-VII.1 FE-57
Photon emission for (n,n^c)
ENDF/B-VII.1 FE-57
Photon emission for (n,p)
ENDF/B-VII.1 FE-57
Photon emission for (n,a)
ENDF/B-VII.1 FE-57
thermal capture photon spectrum

Gamma Energy (MeV)

Gamma Prod (barns/MeV)
ENDF/B-VII.1 FE-57
14 MeV photon spectrum
ENDF/B-VII.1 FE-57
Recoil Heating

![Graph showing recoil heating versus energy (MeV)].

- **Energy (MeV)**: 0 to 160
- **Heating (MeV/reaction)**: 0 to 2.5

The graph illustrates the recoil heating as a function of energy for the ENDF/B-VII.1 FE-57 database.
ENDF/B-VII.1 FE-57
protons from (n,n*)p
ENDF/B-VII.1 FE-57
protons from (n,p)
ENDF/B-VII.1 FE-57 deuterons from (n,x)
ENDF/B-VII.1 FE-57
alphas from (n,x)
ENDF/B-VII.1 FE-57
alphas from \((n,n^*)a\)
ENDF/B-VII.1 FE-57
alphas from (n,a)