N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
resonance total cross section

Energy (MeV) vs. Cross section (barns) plot.
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
resonance total cross section
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
resonance total cross section

Energy (MeV) vs. Cross section (barns)

Total cross section plot with a logarithmic scale for both axes.
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
resonance absorption cross sections

\[\text{Cross section (barns)} \]

\[\text{Energy (MeV)} \]

- Capture
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
resonance absorption cross sections

Energy (MeV) vs Cross section (barns)

- Capture cross section

Plot shows a sharp resonance peak at low energies, followed by a decreasing trend at higher energies.
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
resonance absorption cross sections

Energy (MeV)

Cross section (barns)

- Capture
Damage

Energy (MeV) vs. Damage (MeV-barns) graph.
Non-threshold reactions

Cross section (barns)

Energy (MeV)
The graph shows the relationship between energy (MeV) and damage (MeV-barns) for the reaction $N + 28-NI-62$ using the ENDF/B-VI.6 APT LA150 NJOY 99. The x-axis represents energy in MeV, ranging from 0 to 160, while the y-axis represents damage in MeV-barns, ranging from 0 to 400. The curve indicates that damage increases with energy initially but then levels off, suggesting a peak damage point beyond which damage decreases.
Non-threshold reactions

Energy (MeV) vs. Cross section (barns)

(n,gma)
Inelastic levels

Energy (MeV)

Cross section (barns)

- (n,n*1)
- (n,n*2)
- (n,n*3)
- (n,n*4)

Energy (MeV)
Threshold reactions for the reaction $N + 28$-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99.

The graph shows the cross-section (in barns) as a function of energy (in MeV) for different reactions:

- (n,p) reaction
- (n,d) reaction
- (n,a) reaction

The cross-section for the (n,p) reaction increases rapidly above 10 MeV, reaching a peak around 16 MeV. The (n,d) reaction has a smaller cross-section compared to (n,p) and shows a peak around 12 MeV. The (n,a) reaction has a smaller cross-section compared to the other two and shows a peak around 10 MeV.
Threshold reactions

Energy (MeV)

Cross section (barns)

(n,xp) (n,xd) (n,xt) (n,xa)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99 angular distribution for elastic
angular distribution for elastic
Neutron emission for (n,x)
Neutron emission for (n,2n)
Neutron emission for \((n,n^*)a\)
Neutron emission for \((n,n^*)p\)
Neutron emission for (n,n*c)
Photon emission for \((n,gma)\)
Photon emission for (n,x)
Photon emission for (n,2n)
Photon emission for (n,n*)a
Photon emission for \((n,n^*)p\)
Photon emission for (n,n*c)
Photon emission for (n,p)
Photon emission for (n,a)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
thermal capture photon spectrum

Gamma Energy (MeV)

Gamma Prod (barns/MeV)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
14 MeV photon spectrum
Particle heating contributions

MeV/collision vs. Energy (MeV)

- Protons
- Deuterons
- Tritons
- Alphas
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
protons from (n,n*)p

![Graph showing proton production from (n,n*)p](image)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
protons from (n,p)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
deuterons from \((n,x)\)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
tritons from (n,x)
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
alphas from (n,x)
alphas from (n,n*)a
N + 28-NI-62 ENDF/B-VI.6 APT LA150 NJOY 99
alphas from (n,a)