Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for $^{50}\text{Ti(n,tot.)}$
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 50Ti(n,el.)

Abscissa scales are energy (eV).

Δσ/σ vs. E for 50Ti(n,el.)

Correlation Matrix

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.

Abscissa scales are energy (eV).

Correlation Matrix

$\Delta\sigma/\sigma$ vs. E for $^{50}\text{Ti}(n,\text{el.})$

$\Delta\sigma/\sigma$ vs. E for $^{50}\text{Ti}(n,2n)$

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma / \sigma$ vs. E for 50Ti(n,el.)

$\Delta \sigma / \sigma$ vs. E for 50Ti(n,np)

Correlation Matrix

Abscissa scales are energy (eV).
Abscissa scales are energy (eV).

Ondinate scale is % relative standard deviation.

Correlation Matrix

Δσ/σ vs. E for 50Ti(n,el.)

Correlation Matrix

Correlation Matrix

Correlation Matrix

Correlation Matrix

Correlation Matrix
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma / \sigma$ vs. E for 50Ti(n,el.)

$\Delta \sigma / \sigma$ vs. E for 50Ti(n,p)

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 50Ti(n,el.)

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.

Correlation Matrix

$\Delta \sigma/\sigma$ vs. E for 50Ti(n,α)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

$\Delta \sigma / \sigma$ vs. E for 50Ti(n,inel.)

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

<table>
<thead>
<tr>
<th>1.0</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
<th>0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

σ vs. E for 50Ti(n,2n)

$\Delta\sigma/\sigma$ vs. E for 50Ti(n,2n)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 50Ti($n,n\alpha$)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

$\Delta \sigma / \sigma$ vs. E for $^{50}\text{Ti}(n,np)$

σ vs. E for $^{50}\text{Ti}(n,np)$

Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

1.0 0.8 0.6 0.4 0.2 0.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 50Ti(n,p)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

Delta \sigma vs. E for 50Ti(n,\alpha)

\sigma vs. E for 50Ti(n,\alpha)