σ vs. E for 48Ti(n,tot.)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.

Correlation Matrix

1.0 0.8 0.6 0.4 0.2 0.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0.0 -0.2 -0.4 -0.6 -0.8 -1.0
Ordinate scale is % relative standard deviation.

Abscissa scales are energy (eV).

Correlation Matrix

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{48}\text{Ti}(n,\text{tot.}) \]

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{48}\text{Ti}(n,\text{el.}) \]
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>-1.0</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 48Ti(n,el.)

Abscissa scales are energy (eV).

Correlation Matrix

-1.0 0.0
-0.8 0.8
-0.6 0.6
-0.4 0.4
-0.2 0.2
0.0 0.0

$\Delta \sigma/\sigma$ vs. E for 48Ti(n,inel.)
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

\(\Delta \sigma/\sigma \) vs. E for \(^{48}\text{Ti}(n,\text{el.})\)

\(\Delta \sigma/\sigma \) vs. E for \(^{48}\text{Ti}(n,2n)\)

Correlation Matrix

<table>
<thead>
<tr>
<th>Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
</tr>
<tr>
<td>-0.8</td>
</tr>
<tr>
<td>-0.6</td>
</tr>
<tr>
<td>-0.4</td>
</tr>
<tr>
<td>-0.2</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Abscissa scales are energy (eV).
\[\frac{\Delta\sigma}{\sigma} \text{ vs. } E \text{ for } ^{48}\text{Ti}(n,\text{el.}) \]

Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\begin{array}{cccc}
0.0 & -0.2 & -0.4 & -0.6 \\
-0.2 & 0.0 & -0.4 & -0.6 \\
-0.4 & -0.4 & 0.0 & -0.2 \\
-0.6 & -0.6 & -0.2 & 0.0 \\
\end{array} \]

\[\Delta\sigma/\sigma \text{ vs. } E \text{ for } ^{48}\text{Ti}(n,\alpha) \]

Abscissa scales are energy (eV). Ordinate scale is % relative standard deviation.
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Δσ/σ vs. E for 48Ti(n,el.)

Correlation Matrix

Δσ/σ vs. E for 48Ti(n,np)
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

σ vs. E for 48Ti(n,2n)

Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 48Ti(n,2n)

Correlation Matrix

0.0 0.2 0.4 0.6 0.8 1.0

0.0 -0.2 -0.4 -0.6 -0.8 -1.0
σ vs. E for 48Ti(n,nα)

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

Correlation Matrix

$\Delta\sigma/\sigma$ vs. E for 48Ti(n,nα)

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

\[\begin{array}{cccc}
0.0 & 0.2 & 0.4 & 0.6 \\
0.2 & 0.0 & -0.2 & -0.4 \\
0.4 & -0.2 & 0.0 & 0.2 \\
0.6 & -0.4 & 0.2 & 0.0
\end{array} \]
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 48Ti(n,γ)

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Correlation Matrix

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

σ vs. E for 48Ti(n,p)

$\Delta \sigma / \sigma$ vs. E for 48Ti(n,p)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 48Ti(n,α)

Abscissa scales are energy (eV). Ordinate scales are % relative standard deviation and barns.