Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 46Ti(n,tot.)

$\Delta\sigma/\sigma$ vs. E for 46Ti(n,tot.)
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 46Ti(n,tot.)

$\Delta \sigma/\sigma$ vs. E for 46Ti(n,el.)

Correlation Matrix.

The correlation matrix is a visual representation of the correlation between different variables, where each cell color corresponds to a specific correlation value.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.8</td>
</tr>
<tr>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
$\Delta \sigma / \sigma$ vs. E for 46Ti(n,el.)

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Correlation Matrix

1.0 0.8 0.6 0.4 0.2 0.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Δσ/σ vs. E for 46Ti(n,el.)

Correlation Matrix

Δσ/σ vs. E for 46Ti(n,2n)

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Δσ/σ vs. E for 46Ti(n,el.)

Correlation Matrix
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma / \sigma$ vs. E for 46Ti(n,el.)

Correlation Matrix
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{46}\text{Ti}(n,\text{el.}) \]

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{46}\text{Ti}(n,\gamma) \]

Correlation Matrix

-1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 1.0, 0.8, 0.6, 0.4, 0.2, 0.0
$\Delta \sigma/\sigma$ vs. E for 46Ti(n,el.)

Abscissa scales are energy (eV).

Correlation Matrix

Ordinate scale is % relative standard deviation.

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{46}\text{Ti}(n,\text{el.}) \]

Correlation Matrix

Abscissa scales are energy (eV).

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{46}\text{Ti}(n,\alpha) \]
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 46Ti(n,inel.)

Δσ/σ vs. E for 46Ti(n,inel.)
σ vs. E for 46Ti(n,2n)

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

$\Delta \sigma$ vs. E for 46Ti(n,2n)

10^7 10^0 10^{-2} 10^{-4} 10^{-6} 10^{-8} 10^{-10} 10^{-12}

10^7 10^0 10^{-2} 10^{-4} 10^{-6} 10^{-8} 10^{-10} 10^{-12}

$\Delta \sigma/\sigma$ vs. E for 46Ti(n,2n)

10^7 10^0 10^{-2} 10^{-4} 10^{-6} 10^{-8} 10^{-10} 10^{-12}

10^7 10^0 10^{-2} 10^{-4} 10^{-6} 10^{-8} 10^{-10} 10^{-12}

Correlation Matrix

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.0 0.2 0.4 0.6 0.8 1.0
σ vs. E for 46Ti(n,nα)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.

Correlation Matrix

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

1.0 0.8 0.6 0.4 0.2 0.0
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

σ vs. E for 46Ti(n,np)

Correlation Matrix

$\Delta \sigma / \sigma$ vs. E for 46Ti(n,np)
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.

Correlation Matrix

\[\begin{array}{cccc}
0.0 & 0.2 & 0.4 & 0.6 \\
-0.2 & 0.0 & -0.4 & -0.6 \\
-0.4 & -0.6 & 1.0 & -0.2 \\
-0.6 & -0.4 & -0.2 & 0.0 \\
\end{array} \]
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

σ vs. E for 46Ti(n,p)

Correlation Matrix

Δσ/σ vs. E for 46Ti(n,p)
σ vs. E for 46Ti(n,α)

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

Δσ/σ vs. E for 46Ti(n,α)