Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

σ vs. E for $^{240}\text{Pu}(n,\text{tot.})$

$\Delta\sigma/\sigma$ vs. E for $^{240}\text{Pu}(n,\text{tot.})$

Correlation Matrix
Ordinate scale is \% relative standard deviation. Abscissa scales are energy (eV).

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{240}\text{Pu}(n,\text{tot.}) \]

Correlation Matrix

Abscissa scales are energy (eV).
σ vs. E for 240Pu(n,el.)

Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.

\[\Delta \sigma / \sigma \text{ vs. } E \text{ for } ^{240}\text{Pu}(n,\text{el.}) \]

Correlation Matrix

\[\begin{array}{cccccccc}
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
0.2 & -0.2 & -0.4 & -0.6 & -0.8 & -1.0 \\
0.4 & -0.4 & -0.6 & -0.8 & -1.0 & -1.2 \\
0.6 & -0.6 & -0.8 & -1.0 & -1.2 & -1.4 \\
0.8 & -0.8 & -1.0 & -1.2 & -1.4 & -1.6 \\
1.0 & -1.0 & -1.2 & -1.4 & -1.6 & -1.8 \\
\end{array} \]
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 240Pu(n,el.)

Correlation Matrix

$\Delta \sigma/\sigma$ vs. E for 240Pu(n,2n)
Ordinate scale is % relative standard deviation. Abscissa scales are energy (eV).

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{240}\text{Pu}(n,\text{el.}) \]

Abscissa scales are energy (eV).

Correlation Matrix

[Color legend for correlation matrix]

\[\Delta \sigma/\sigma \text{ vs. } E \text{ for } ^{240}\text{Pu}(n,3n) \]
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

\(\Delta \sigma/\sigma \) vs. E for \(^{240}\text{Pu}(n,\text{el.}) \)

Correlation Matrix

\(\Delta \sigma/\sigma \) vs. E for \(^{240}\text{Pu}(n,f) \)
Ordinate scale is %
relative standard deviation.
Abscissa scales are energy (eV).

$\Delta\sigma/\sigma$ vs. E for $^{240}\text{Pu}(n,\text{el.})$

$\Delta\sigma/\sigma$ vs. E for $^{240}\text{Pu}(n,\gamma)$

Correlation Matrix

Matplotlib documentation

SciPy documentation

Pandas documentation

Python language guide

Matplotlib example

SciPy example

Pandas example
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

σ vs. E for 240Pu(n,2n)

$\Delta \sigma/\sigma$ vs. E for 240Pu(n,2n)

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

σ vs. E for 240Pu(n,f)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.

Correlation Matrix

$\Delta \sigma / \sigma$ vs. E for 240Pu(n,f)
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

\[\sigma \text{ vs. } E \text{ for } ^{240}\text{Pu}(n,\gamma) \]