Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

-0.0 -0.4 -0.6 -0.8 -1.0
0.0 0.2 0.4 0.6 0.8 1.0

σ vs. E for 2H(n,tot.)

Abscissa scales are energy (eV).

Ordinate scales are % relative standard deviation and barns.

$\Delta\sigma/\sigma$ vs. E for 2H(n,tot.)
\[\frac{\Delta \sigma}{\sigma} \text{ vs. } E \text{ for } ^2\text{H}(n,\text{tot.}) \]

Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).
Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Correlation Matrix

$\Delta \sigma / \sigma$ vs. E for 2H(n,el.)

σ vs. E for 2H(n,el.)

Abscissa scales are energy (eV).
\[\frac{\Delta \sigma}{\sigma} \text{ vs. } E \text{ for } ^2H(n,\text{el.}) \]

- Ordinate scale is % relative standard deviation.
- Abscissa scales are energy (eV).
- Warning: some uncertainty data were suppressed.
Ordinate scales are % relative standard deviation and barns.
Abscissa scales are energy (eV).

Warning: some uncertainty data were suppressed.

Correlation Matrix
Ordinate scales are % relative standard deviation and barns. Abscissa scales are energy (eV).

$\Delta \sigma/\sigma$ vs. E for 2H(n,\gamma)

σ vs. E for 2H(n,\gamma)

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>-1.0</th>
<th>-0.8</th>
<th>-0.6</th>
<th>-0.4</th>
<th>-0.2</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

The Correlation Matrix indicates the degree of correlation between different variables.