Ordinate scales are % relative standard deviation and nu-bar.
Abscissa scales are energy (eV).

Correlation Matrix

\(\Delta \nu / \nu \) vs. E for \(^{253}\text{Cf}(\text{total } \nu)\)

- Ordinate scales are % relative standard deviation and nu-bar.
- Abscissa scales are energy (eV).

Correlation Matrix

- \(-1.0\) to \(1.0\)

\(0.0\) to \(0.2\)

\(0.2\) to \(0.4\)

\(0.4\) to \(0.6\)

\(0.6\) to \(0.8\)

\(0.8\) to \(1.0\)
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Δν/ν vs. E for 253Cf(total ν)

Δν/ν vs. E for 253Cf(delayed ν)

Correlation Matrix

Abscissa scales are energy (eV).
Ordinate scale is % relative standard deviation.
Abscissa scales are energy (eV).

Δν/ν vs. E for 253Cf(total ν)

Correlation Matrix

Abscissa scales are energy (eV).

ordinate scale is % relative standard deviation.
Ordinate scales are % relative standard deviation and nu-bar.
Abscissa scales are energy (eV).

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>-1.0</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ν vs. E for ^{253}Cf(delayed ν)

$\Delta \nu / \nu$ vs. E for ^{253}Cf(delayed ν)