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Introduction
● Historical Remarks
● Some Definitions
● The Big Picture
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Experimental Discovery of Nuclear Fission

• 1939: experimental discovery of 
neutron-induced fission

• 1940: experimental discovery of 
spontaneous fission by K.A. 
Petrzhak and G.N. Flerov

L. Meitner, Nature 3615, 239 (1939).
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Fission: A Large Amplitude Collective Motion

• Induced fission as a two-step 
process: formation of a compound 
nucleus  followed by its decay

• Semi-classical process that can be 
described by a set of collective vari-
ables (=deformations) 

• Separate collective motion and in-
trinsic excitations

• Adiabatic approximation: the cou-
pling between intrinsic and collec-
tive can be neglected
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● Experimental observations are compatible with the picture of the 
nucleus as a small liquid drop that splits into two smaller drops [1].

● Keep in mind some of the approximations in this historical picture 
of  fission (neutron-induced)

✔ Two-step process: formation of an excited compound nucleus with a 
“long” lifetimes, followed by fission;

✔ Driven by a few collective variables, which are often some deformations 
characterizing the nuclear shape;

✔ No coupling between intrinsic and collective degrees of freedom, the 
system remains in equilibrium at all times.

● Already in Bohr & Wheeler paper, there were arguments about the 
possibility of spontaneous fission via quantum tunneling through 
some potential energy surface [2].
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Theorist’s TODO List

• Choose collective variables

• Compute energy as a function of 
collective variables

• Compute dynamical evolution 
through that space

– Quantum tunneling for spontaneous 
fission

– Quantum collective flow for fission 
fragment distributions

– Real-time dynamics for single fission 
events

– Alternative: statistical model

LLNL-PRES-737743

● Nuclear fission is one of the most complex scientific problems you 
can imagine

✔ It requires quantum mechanics in full glory, including concepts such as 
delocalization, entanglement, fluctuations, etc.;

✔ It is a many-body problem with no analytical solution: One of the main 
difficulties is to explain how various types of correlations induced by the 
nuclear Hamiltonian are responsible for the “emergence” of collective 
effects;

✔ It involves nucleons in interaction: nuclear forces should in principle be 
mathematically derived from quantum chromodynamics, or at least be 
constrained by it. This is a research area of its own;

✔ Fission is naturally a time-dependent process, which significantly adds to 
the computational difficulty;

✔ It is also an open system: a fissioning nucleus and/or its fragments can 
emit particles and radiation (gamma), hence it it coupled to its 
environment. Furthermore, some of the observables that are important 
for energy applications are precisely these neutrons and gammas.
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Nuclear static properties in the 
collective space

● Macroscopic-Microscopic Models (4)
● Nuclear Energy Density Functional Theory (4)
● The Concept of Scission (3)
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● Computing the properties of the fissioning nucleus as a function of 
the collective variables is the first, most important task in almost any 
theory of fission

● This seems pretty obvious for adiabatic approaches, since it is assumed 
there that everything else does not matter that much;

● Less obviously, we will see that it is also important for non-adiabatic 
approaches based on real-time dynamics, as it helps preparing a suitable 
initial state.

● Most of the work on fission product yields (FPY) done over the years 
point to the fact that most of the properties of these FPY can be 
directly inferred from the properties of the potential energy surface 
(PES)

● The devil is in the details, though...
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Macroscopic-microscopic Models (1/4)
Introduction

• Take into account nucleon 
degrees of freedom

– Shell correction coming 
from the distribution of 
single-particle levels

– Pairing correction to mock 
up the effect of residual 
interactions

• Extensions to finite 
angular momentum or 
temperature are also 
available

In the macroscopic-microscopic approach, the basic degrees of freedom are the single-particle 
states and the nuclear deformations, and the equation of motion is the Schrödinger equation
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● The liquid drop picture of the nucleus was very successful but 
could not explain the existence of shape isomers: long-lived states 
characterized by a large quadrupole moment (or, equivalently, large 
electric quadrupole gamma transitions) [3–5].

● In 1950, Goeppert-Mayer and Jensen were awarded the Nobel prize 
for their discovery of the nuclear shell structure: how could we 
reconcile this with the liquid drop picture?

✔ In the independent particle model (which was called shell model at the 
time but has little to do with what we call shell model today), a nucleus 
is a bunch of nucleons that occupy single-particle (s.p.) orbitals;

✔ Gaps in the distribution of s.p. orbitals bring extra binding energy, 
hence the special role of doubly closed shell nuclei;

✔ The shell structure changes with deformation, hence we can observe 
nuclei that are more bound in a deformed configuration than in a 
spherical one (deformed ground-state).

● The macroscopic-microscopic approach incorporates information 
about the shell structure (microscopic) into the liquid drop picture 
of the nucleus (macroscopic) [6,7].
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Macroscopic-microscopic Models (2/4)
Components of the Total Energy

• Total energy is written

• Macroscopic liquid drop energy

• Shell correction

• Pairing correction

• Shell and pairing corrections require a set of single-particle energies 
e

n
: need to solve the Schrödinger equation
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● The liquid drop contribution gives more than 99% of the mass of 
the nucleus; the shell correction gives the remaining 1% (the 
contribution of the pairing correction is of the order of 0.1%) [3–7].

✔ Everything is relative: 1% of a nucleus with 1,000 MeV still gives about 
10 MeV effect;

✔ Overall quality of mass prediction in macro-micro method is of the order 
of 0.5 MeV!

● Shell and pairing effects are essential to understand the origin of, 
and quantitatively explain

✔ Deformation effects: shape isomers, super- and hyper-deformed 
configurations;

✔ Qualitative differences between the spectra of even-even and odd-
even/even-odd/odd-odd nuclei.

● The liquid drop (and its more advanced formulation, the droplet 
model) has connection with nuclear matter properties: a nuclear 
liquid drop is nothing but a little chunk of nuclear matter enclosed 
in a finite volume [3-5].
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Macroscopic-microscopic Models (3/4)
Single-Particle Degrees of Freedom

• (One-body) Schrödinger equation

• Mean-field potential can be Nilsson, 
Woods-Saxon, Folded-yukawa, etc.

• Solve BCS equation (for example) to 
compute occupation of s.p. states 
and extract pairing energy

• Collective variables are deformations 
that define the shape of the potential
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● Solving the one-body Schrödinger equation is the most time-
consuming part of the macroscopic-microscopic approach

● The macroscopic-microscopic approach defines a nuclear 
phenomenology based on single-particle orbitals and collective 
deformations as basic degrees of freedom. It is an extremely 
powerful tool

✔ The distribution of s.p. levels is an excellent predictor of the stability of 
a nucleus (shell gaps), whether these gaps appear as a function of 
deformation or rotational frequency (high-spin physics);

✔ Specific excited configurations can be constructed by multiple particle-
hole excitations;

✔ In some cases (odd nuclei in particular), the quantum numbers of s.p. 
states can be directly related to quantum numbers of the nucleus.

● There exist extensions of the macroscopic-microscopic approach to 
account for collective rotation (cranking model) and high-energy 
excitation (finite-temperature)[8–10].
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Macroscopic-microscopic Models (4/4)
Examples

• The macroscopic-microscopic model can be applied to ground-
state properties, e.g., masses

• Given a set of collective variables, we can calculate the potential 
energy surface, that is, the function E(q)
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● The macroscopic-microscopic approach remains a very powerful 
tool to analyze properties of nuclei [11–13].

● The root of its success is in... the Pauli principle, which justifies 
seeing a nucleus as a bunch of independent particles in some 
average potential.

● Current state-of-the-art: liquid drop + shell correction + pairing 
correction (with/without particle number projection) for g.s. 
properties, QRPA with residual interaction for low-lying excited 
states; Langevin equations for collective dynamics.

● There is a lack of consistency between the various components of 
the model. For instance, one may think that the parameters of the 
liquid drop (related to nuclear matter) should be somewhat 
connected to the shell and pairing structure.

● Going beyond the current accuracy requires either more parameters 
(less predictive since they need to be fit) or … a real two-body 
Hamiltonian, which defeats the purpose of the method.
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Nuclear Density Functional Theory (1/4)
Introduction

● Describe fission as emerging from nuclear forces and quantum 
many-body effects

● We cannot use modern nuclear forces as given by chiral effective 
field theory because direct solution of the full many-body problem 
is not possible for heavy nuclei

● Use effective methods: 
– Enforce a simple form of the many-body wave function for the system 
– Design an effective Hamiltonian such that 

– Minimize energy with respect to unknown parameters of |Φ>
● Examples of reference states |Φ>

– Slater determinant (Hartree-Fock, HF)⇔System described by density matrix
– Quasiparticle vacuum (Hartree-Fock-Bogoliubov, HFB)⇔System described by 

generalized density 
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● Density functional theory (DFT) in nuclear physics is different 
from DFT for atomic or molecular structure. In this presentation, I 
will not discuss any of these differences.

● Note that the term DFT has been popularized in the nuclear 
physics community after 1998. Coincidence: In 1998, Walter Kohn 
was awarded the Nobel Prize (in Chemistry) for the development of 
DFT for electrons...

● Other names frequently used for the set of methods that I am 
going to present: self-consistent mean-field theory (and beyond 
mean-field), energy density functional methods [14].

● Bottom line of nuclear DFT: turn the original nuclear many-body 
problem into something that is tractable.

● Key elements:
✔ Choose a “simple” form for the many-body wave function describing the 

nucleus. In nuclear DFT, the most important of these “simple” forms is 
called a HFB vacuum, see next slide;

✔ Determine the parameters of this simple form by solving an equation 
obtained by the requirement that the energy should be minimal with 
respect to these parameters. This will be the HFB equation.
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Nuclear Density Functional Theory (2/4)
Hartree-Fock-Bogoliubov Theory

● Introduce Bogoliubov transformation (second quantization)

● What is the meaning of these quasiparticles? 
– Creating one quasiparticle is equivalent to moving a bunch of particles from 

some states to some other states  (with some probability): Quasiparticles 
represent excitations of the system

– HFB gives the ground-state of a nucleus and its excitations 

● Unknown parameters of |Φ>: the matrices U and V 

● We can express the energy as a function of only two objects, the 
density matrix ρ and pairing tensor κ, which are both expressed as 
function of U and V
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● The HFB theory is the cornerstone of modern DFT. It was 
designed to describe pairing on the same footing as s.p. levels. 

● It reduces the number of “unknowns” to just the density and the 
pairing tensor. Once these 2 objects are known (by solving the 
HFB equation), you can in principle calculate any observable.

● The key point is to find a way to determine U and V. This is 
equivalent to determining ρ and κ; this is also equivalent to 
knowing the quasiparticle operators, hence the many-body wave 
function 

which obeys the fundamental property  
● The density matrix and pairing tensors are defined by

● In other words, look at the overlap between the wavefunction 
obtained by moving a particle from state i from to state j with the 
original wave function: it is the element (i,j) of the density matrix.

● We can show that in the HFB theory they are actually given by
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Nuclear Density Functional Theory (3/4)
Single- and Multi-Reference Energy Density Functional Theory

● Single-reference energy density functional approach (SR-EDF) is 
built on top of the HFB theory
– Choose an effective Hamiltonian or, equivalently, a form for the energy 

dependence E[ρ,κ] (Skyrme, Gogny)

– Solve the HFB equation in order to determine ρ and κ

● Why the name? Because it only depends on one reference state…
● What does it have to do with fission?

– Solve HFB equation with constraints on the expectation value of multipole 
moments operators: potential energy surfaces, fission barriers

– Same philosophy as macro-micro, only the energy is obtained differently

● Multi-reference EDF
– Take two different reference states (say, 2 different deformations)

– Energy is now functional of transition densities
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● Once we have chosen a nuclear Hamiltonian, we can express its 
expectation value on the HFB ground-state. Suppose we take only 
a two-body Hamiltonian, we find

● With the mean-field potential and pairing field given by

● Imposing that the energy be a minimum with respect to variations 
of ρ and κ (remember: these are the only “parameters”) leads to the 
HFB equation, which can be put into the form of a pseudo-
eigenvalue problem (here written with some constraints Qn)

● Note that both mean-field and pairing field depends on the 
eigenvectors through ρ and κ: this is an example of a non-linear 
eigenvalue problem. 
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Nuclear Density Functional Theory (4/4)
Examples

• DFT can now be applied to g.s. 
properties (masses), decays 
(beta-decay)

• Potential energy surfaces can be 
computed easily
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● There are probably about a dozen computer programs on the 
market that can solve the HFB equation under various 
approximations/conditions [15–22]

✔ Solve them as presented before, that is, “in a basis” (typically, the 
harmonic oscillator basis for energy functionals that can be Skyrme- or 
Gogny-like;

✔ Solve them by direct integration in coordinate space (beyond the scope 
of this lecture);

✔ Assume, or not, that specific symmetries are present in the system. For 
example, that the densities are axially symmetric.

● Solving the HFB equation for one nucleus gives its ground-state 
energy, hence its mass; repeating it for all known nuclei gives you a 
full mass table. In the same run, you can calculate, e.g., the r.m.s. 
radius of the system, or its (intrinsic) quadrupole moment, or (a 
not so great approximation of) its first excited state, etc.

● The HFB solution is also the starting point for several other 
theories capable of describing beta-decay (random phase 
approximation), shape coexistence (generator coordinate method), 
etc.
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Concept of Scission (1/3)
Introduction

• The scission line distinguishes 
regions of the PES where the 
nucleus is whole and where it 
has split in two fragments

– Macro-micro: can be built-in the 
shape parametrization

– DFT: often identified as a 
discontinuity
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● The potential energy surface (PES) of the fissioning nucleus 
(whether computed in the macro-micro or DFT approach) 
encapsulates how the energy changes with the deformation(s) of 
the system.

● The scission line (in a 2D PES, the scission (N-1)d-surface in a Nd- 
PES) defines the frontier between regions of the PES where the 
nucleus is whole and regions where it has split [23].

● In macroscopic-microscopic models, the nuclear shape has to be 
parametrized. All parametrizations have a finite number of 
parameters, and some of them allow going continuously from a 
single compact object to 2 fragments.

● In DFT, the nuclear shape is automatically determined by the 
requirement that some constraints on multipole moments are 
satisfied and that the energy be minimal with respect to every 
other multipole moment: a DFT PES is a projection of an 
infinitely-dimensional “surface” into the finite-dimensional collective 
space [24].
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• Sharp, geometric scission unreal-
istic

– Coulomb forces take over nuclear 
forces before neck vanish

– DFT: scission often viewed as 
discontinuity but only because 
finite number of collective 
variables

• More realistic descriptions imply 
scission (radius, density, etc.) 
becomes a parameter of the cal-
culation

Concept of Scission (2/3)
Continuous scission
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● In DFT, the  concept of scission poses serious problems [25–28]:
● Describing all possible 3D shapes require an infinity of parameters 

(think, multipole expansion) and there is no evidence that the shape of 
the system should be allowed to change in a discontinuous way – 
contrary to what happens in practice;

● By virtue of the variational principle, fission fragments come out in their 
ground-state as soon as they are far enough from one another that the 
nuclear interaction between them becomes negligible.

● The concept of scission is, therefore, an artifact of using a static, 
finite-dimensional representation of the nuclear shape: if we add 
more collective variables, these discontinuities will be removed: 
where will scission be, then?

● This problem is specific to DFT, but the macro-micro has its own 
set of difficulties:

● Sharp nuclear surfaces are incompatible with experimental evidence that 
the density has a diffuseness;

● Coulomb forces may render the nucleus unstable against fission before 
we reach the point where the two fragments are separated: scission must 
occur before what geometry tells us [29].
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• Simple, user-defined criteria for scission often ignore
– Quantum nature of fission fragments and neck region: antisymmetry

– Finite-range of nuclear and Coulomb forces

• Adiabatic theory not adapted to describe dynamical, non-equilib-
rium process such as scission

Concept of Scission (3/3)
Scission and quantum entanglement
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● Wait, there is more: the nucleus is a quantum-mechanical system, 
with a density of particles that decays exponentially outside the 
nucleus – but never goes, mathematically speaking, to 0.

● Therefore, the density of particles in the left fragment extends into 
the right fragment and vice-versa: the two are entangled – in a 
quantum mechanical sense.

● Fission fragment observables (energy, deformation, spin, etc.) 
depend crucially on the characteristics of this entanglement.

● In fact, mathematically, you can perform a unitary transformation 
of the whole fissioning system that leaves it invariant but 
completely changes the properties of the fragments: fission 
fragments are not uniquely defined in the adiabatic theory!

● This fascinating aspect of fission is not visible in macroscopic-
microscopic approaches, but its practical consequences are the 
same: every prediction of fission fragment yields very sensitively 
depend on a somewhat arbitrary definition of scission 
configurations [26-28].
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Fission Dynamics
● Classical Dynamics (2)
● Quantum Dynamics – TDGCM (3)
● Quantum Dynamics – TDDFT (3)
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The Scission Point Model
Statistical Approximation to Fission Dynamic

• Static picture exclusively based on 
the structure of the potential en-
ergy surface at scission (including 
the fragment characteristics)

• Probability of fission is simply re-
lated to (Wilkins)

or the level densities of the two 
fragments (SPY)
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● The scission point was originally invented by Wilkins in 1976 and 
relied on calculations of potential energy surfaces within the 
macroscopic-microscopic picture and the canonical ensemble for the 
statistical phase space (Boltzman factor)[30].

● The CEA recently proposed a modification of the scission point 
model based on the explicit calculation of level densities for the 
fragments (=microcanonical ensemble)[31].

● The main advantages of scission point models are
✔ To skip entirely the dynamical phase of the calculation of FPY;
✔ To give a average-to-good reproduction of total kinetic energy.

● The downsides are
✔ An overall poor-to-average reproduction of experimental data – not as 

good as explicitly time-dependent approaches;
✔ A strong dependence on scission configurations, including the position of 

the scission (acknowledged by scission point practitioners) but also the 
entanglement of fission fragments (not necessarily realized).
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Classical Dynamics (1/2)
Langevin equations

● How to extract fission product yields from the knowledge of the po-
tential energy surface?
– Analogy with classical theory of diffusion

– Collective variable = generalized coordinate

– Define related momentum

● Langevin equations

Friction tensor
Random force

Fluctuation-dissipation theorem
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● The Langevin equation is a classical approach to nuclear dynamics
● Nucleus is assumed point-like;
● The PES determines the entire phase space.

● The presence of the random force allows to simulate quantum 
tunneling effects: if this term is absent, the particle can only go 
downhill; with this term, it can “climb” and go over barriers.

● Solving the Langevin equation requires the knowledge of the 
collective mass tensor Bαβ and of the friction tensor Γαβ; there are  
theories available to compute the mass tensor [23,32,33], but the 
friction tensor is often more phenomenological.

● The inputs to the Langevin equations can be computed with any 
model capable of producing at each point of the collective space, 
the energy, the collective mass tensor and the friction tensor.

● There are variants of the Langevin equation in the literature where 
the mass tensor is set to 0 (strongly-damped evolution)[34–36].

● The Langevin equations are non-deterministic and give trajectories 
in phase space; they can be related to a deterministic Kramers 
equation, which gives the evolution of the probability distribution 
function of being at any point in phase space at time t [37].
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Classical Dynamics (2/2)
Practical examples

• Start beyond the saddle point (or close enough)

• Build trajectories through the collective space by generating at 
each step the needed random variable

• Enough trajectories (in the thousands) allow reconstructing FPY
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● Solving the Langevin equation is relatively cheap compared to the 
calculation of the PES itself (especially in more than 2 
dimensions).

● Reconstructing fission fragment distributions, however, requires 
large samples of Langevin trajectories (at least several thousands, if 
not millions) to get good statistics. 

● Note that a given initial point on the PES generates an infinity of 
possible trajectories thanks to the presence of the random force. 
However, the tails of the distribution (very asymmetric fission with 
a very light and a very heavy fragment) requires different initial 
conditions from the peaks of the same distribution.

● Note that the Langevin equation is a great tool to obtain 
distributions for spontaneous fission: the initial point is chosen not 
on the saddle (the top of the second barrier), but at the outer 
turning point of the WKB theory [38].
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• Ansatz for the time-dependent many-body wave function

• Minimization of the time-dependent quantum mechanical action + 
ansatz + Gaussian overlap approximation

• Interpretation
–              is probability amplitude to be at point q at time t

– Related probability current 

– Flux of probability current through scission line gives yields

Quantum Dynamics - TDGCM (1/3)
Computing the flow of probability in the collective space
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● The TDGCM is a fully quantum-mechanical approach to treat 
nuclear dynamics which is an extension of the multi-reference EDF 
very briefly mentioned earlier [39–43].

● It provides a fully-consistent description of static and dynamics 
properties: the same energy functional is used to determine the 
potential energy surface and the collective inertia tensor, which are 
the only inputs to the dynamics.

● The TDGCM equation has not been solved exactly (yet) to 
produce fission product yields. Instead, people have used the 
Gaussian Overlap Approximation (GOA), which assumes that 

It is the GOA approximation that allows to recast the whole time-
dependent evolution into a simple, collective Schrödinger equation 
[23].
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Quantum Dynamics - TDGCM (2/3)
Example: TDGCM Evolution

LLNL-PRES-737743

The movie shown here is an example of time-evolution of the 
collective wave-packet, g(q,t), that is, of the solution of the collective 
Schrödinger equation, see slide 22. Calculations were done for the 
neutron-induced fission of 239Pu, that is, the collective wave-packet 
represents the 240Pu compound nucleus. The collective space is two-
dimensional and characterized by the axial quadrupole and axial 
octupole moments. The red line represents the scission line, defined 
here as by the criterion that the number of points in the neck region 
is lower than 4. For more details on the calculation, see [43] and 
references therein.
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Quantum Dynamics – TDGCM (3/3)
Examples: Fission Product Yield Calculations

LLNL-PRES-737743

The figures represent state-of-the-art TDGCM calculations of fission 
fragment yields for neutron-induced fission. The figure on the left 
(unpublished) shows the transition between symmetric and 
asymmetric fission in Fermium isotopes. It was obtained with the code 
FELIX developed jointly by CEA and LLNL (D. Regnier, lead 
developer). The figure on the right shows the evolution of fission 
fragment yields in 239Pu(n,f) as a function of the energy of the initial 
wave-packet; see [42] for additional details.
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Quantum Dynamics – TDDFT (1/2)
Brief Introduction

● Main limitation of Langevin and TDGCM: adiabaticity is built-in
– Need to precompute potential energy surfaces (costly)

– Invoke arbitrary criteria for scission

– Does not (easily) include dissipation = exchange between intrinsic (=single-
particle) and collective degrees of freedom

● Solution: Generalize DFT to time-dependent processes

● Start from many-body Schrödinger equation

● Insert approximation that many-body state is q.p. vacuum at all 
time

LLNL-PRES-737743

● Applications of time-dependent DFT to fission are still in their 
infancy – although the first application of time-dependent Hartree-
Fock was done back in 1978.

● TDDFT removes many of the limitations of adiabatic approaches, 
most notably the need for the adiabatic approximation itself, and 
provides a real-time description of the fissioning nucleus. 

● It can be viewed as the quantum-mechanical analogue of the 
Langevin equation: solving the TDDFT equation for one initial 
condition gives a “trajectory” in some phase space.

● Most work until now has been based on time-dependent Hartree-
Fock (TDHF); very recently (past 2 years), there have been the 
first applications of TDDFT with pairing correlations built-in 
(TDHF+BCS, TDHFB) or with some stochastic fluctuations 
included [44–47].
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Quantum Dynamics – TDDFT (2/3)
Advantages and Limitations

● Advantages
– TDDFT does not require adiabaticity, total energy is conserved: diabatic 

excitation of s.p./q.p. states

– Dynamic shape evolution: normal and pairing vibrations, giant resonances

– Produces ‘naturally’ excited fission fragments

● Limitations
– Computational cost is enormous (especially for TDHFB)

– Nucleus cannot tunnel through (semi-classical): not adapted to SF

– Need HFB solver in coordinate space

● Computing FPY from TDDFT by sampling trajectories is in principle 
possible but would require computational resources at or beyond 
exascale (100x what we have now)

LLNL-PRES-737743

● By providing an explicit mechanism to describe dissipation, 
TDDFT promises to give much more accurate estimates of 
fragment kinetic energies.

● TDDFT does not really need a scission point – or rather, it is much 
less sensitive to the definition of scission. This is because the total 
energy is conserved, hence the fragments will remain excited even 
after they have split. In the adiabatic picture based on the HFB 
theory (or the macroscopic-microscopic approach), the fragments 
dive in their ground-state as soon as they are far from one another.

● Three reasons why the computational cost is enormous for TDHFB
✔ We need precise solution of the TDHFB equation even when the two 

fragments have separated. This requires covering of the order of 25 fm 
range;

✔ Some HFB quasiparticles (with energy Ek > |λ|) are delocalized, 
meaning they extend over all space. Once again, this means that one 
must be able to describe accurately what is happening “far” from the 
center of the fissioning nucleus;

✔ Quasiparticle energies evolve as a function of deformation, hence as a 
function of time. This means that one must keep track of a very large 
number of q.p. orbitals.
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Quantum Dynamics – TDDFT (3/3)
Examples

LLNL-PRES-737743

The movie on the left (unpublished) shows the real-time nuclear 
dynamics of 240Pu computed from time-dependent density functional 
theory, including a full treatment of pairing correlations. The 
theoretical and computational frameworks are the same as in [46]. The 
figure on the right shows the fission fragment distributions for 
Fermium isotopes obtained with a particular variant of TDDFT called 
stochastic time-dependent Hartree-Fock; see [47] for details.
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Conclusions
● Navigating the zoo of methods
● Perspectives
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A Bird’s View
Elements of comparisons of different approaches

Quantum Description Adiabaticity Observable Computational 
cost

Scission 
point model

Half Static Yes Fission 
yields

Low

Macro-micro
+

Langevin
Half

Static
+

dynamic
Yes Fission 

events Low

DFT
+

TDGCM

Full Static
+

dynamic
Yes Fission 

yields Moderate-high

TDDFT Full Dynamic No Fission 
events Very high

LLNL-PRES-737743

● The cardinal rule of nuclear theory: there is no perfect theory, no 
miracle recipe, no “there is only one way”…

● Each approach has its own merits, its own strengths and its own 
weaknesses. Practitioners of a given approach are experts at both 
selling its strengths and downplaying its weaknesses.

● Factors to take in consideration
● Can the model deliver the observables that I want?
● Can it deliver them with the accuracy and precision that I need for my 

applications (note for non-english speakers: these are two distinct 
concepts)?

● What is its demonstrated predictive power and its potential predictive 
power?

● What are the computational resources needed?
● What is the time-to-solution?

● Note that there are connections between these various approaches: 
the macro-micro approach provides the PES for the scission point 
model; the Langevin equations can be solved on top of a DFT-
generated PES, etc.
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A Bird’s View
Elements of comparisons of different approaches
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● Historically, the scission point model was the first attempt at 
predicting fission product yields based on a model of the nucleus 
(in contrast to fitting data).

● Until the beginning of the 21st century, the macroscopic-microscopic 
method coupled with the Langevin equation was the only 
theoretical approach that was doable in practice.

● Over the past 2 decades, microscopic theories based on time-
dependent extensions of DFT (TDGCM and more recently 
TDDFT) have become very competitive – even though they still 
require substantial computational resources.

● Ballpark estimate of accuracy on FPY predictions for current 
models: of the order of 30% for actinides

● Some of the challenges to go below 5% accuracy
✔ Know where you stand: Quantify and propagate uncertainties of 

nuclear models. To which of their components are the models most 
sensitive?

✔ Adiabatic approaches: everything depends on scission. What are the 
static nuclear properties at scission (which is really non-static by 
nature)?

✔ Non-adiabatic approaches: how to include information on collective 
degrees of freedom into TDDFT?
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