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How to get the most out of these lectures 

§  See previous lectures from FIESTA2014, in particular J. E. Lynn’s slides and 
notes on fission cross-section theory 

§  Difficult to absorb material during lecture 
•  At your leisure, go through slides and pretend you’re teaching 
•  Work through the examples (especially the 1D problems) 
•  Play with the codes (I will talk about a couple) 

§  Reaction theory and fission cross-section modeling is a vast topic 
•  These slides will not cover everything! 
•  Notes will contain references and suggestions for further reading 
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Outline 

§  Compound nucleus reaction theory 
•  From resonances to Hauser-Feshbach cross-section theory 

§  Fission in the transition state model 
•  A fission model for the Hauser-Feshbach formula 

§  Practical applications 
•  A cross-section code, and some thoughts about evaluations and 

uncertainty quantification 
§  Future outlook 

•  Cross sections starting from protons, neutrons, and their interactions 

§  Appendix (I will not have time to go through this) 
•  Scattering theory 
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COMPOUND NUCLEUS REACTION 
THEORY 
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Reminder: scattering theory 

§  From Schrödinger equation to resonances (see appendix) 
§  State with decay lifetime 𝝉 has an energy spectrum (instead of definite E) 

§  Absorption cross section for partial wave with angular momentum ℓ, 

§  Transmission probability 𝐓ℓ is related to width 𝚪 and level spacing 𝑑, 
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Compound nucleus cross section 

§  For one resonance, we already showed: 

§  Cross section for making a compound state: 

§  Get N0 from normalization condition: 
Level density
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Compound nucleus cross section: the Bohr hypothesis 

§  So far, for one open channel a + A → C  (or C → a + A) with 𝞪 ≡ a + A 

§  At higher E, more channels open up, then: 

§  Bohr hypothesis: reaction proceeds in two independent steps: 
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Hauser-Feshbach theory 

§  Caveat: Bohr hypothesis should not violate conservation laws (energy, 
angular momentum, parity)! 

§  More general form for a + A → C → b + B: 
•  Include statistical spin factor to account for random orientation of beam 

and target nuclei 

•  Note sum over compound states n with energy ≈ E and total spin JC 

Next: develop theory for energy-averaged 
cross sections (= Hauser-Feshbach theory)
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Hauser-Feshbach theory 

§  Average out individual resonances (integral over 𝚫E ≈ integral over ±∞): 

§  Average out the sum over resonances by going to continuous limit: 

§  Average cross section: 
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Width fluctuation correction 

§  Much more useful to write in terms of average widths: 

•  W𝛂𝜷 = width fluctuation correction factor 
•  If we can describe widths by probability distributions, then we can 

calculate W𝛂𝜷 explicitly 
§  Remember that 

§  Therefore: 

One more step: in practice we don’t observe JC (or the parity 𝚷C)
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The Hauser-Feshbach cross section 

§  The full formula (Hauser-Feshbach with width fluctuation): 

§  For simplicity, we will assume W𝜶𝜷 = 1 
•  Then we can sum over entrance (𝜶) and exit (𝜷) channels separately! 

Sum over spin 
couplings in 
entrance channel

Sum over spin 
couplings in exit 
channel

Sum over 
energetically 
allowed exit  
channels

All that’s left to do is calculate the transmission coefficients!
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The neutron channel 

Sums over all spin 
and parity couplings Parity selection rule

Integral over neutron 
kinetic energies

From optical model Level density
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The gamma channel 

Sums over radiation character + 
all spin and parity couplings Parity selection rule

Integral over photon 
energies

Strength function, 
from model

Level density
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The elephant in the room: level densities 

§  We have used 𝝆(E) ~ 1/d 
•  Ok over small energy range, but not realistic otherwise 
•  Dependence on E, J, 𝛑? 

§  Fundamentally, this is a counting problem: 

•  Loop through all proton and neutron multi-particle-multi-hole configs 
•  Calculate E, J, 𝛑 and store 
•  Count levels in each energy bin with given J and 𝛑 ⇒ 𝝆(E,J,𝛑 ) 

Hard to do without truncations and/or approximations
(also ignores residual interactions, like pairing)
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Counting energy states: Laplace transform trick 

§  We want density of states of given particle number A and energy E: 

§  Take Laplace transform → partition function 

§  Factorize sum into product over s.p. states 

§  Invert Laplace transform (numerically or by saddle-point approximation) 
§  Can also include pairing by redefining n and En,i sums over quasiparticles 

Huge number 
of terms!

Energy of 
mp-mh state

Sums over 
s.p. states

Still a huge 
number of terms!

few terms!
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Counting states: try this at home 

§  Alternate counting method: using Fourier transform 

§  Short python code at end of paper, or: 
•  http://www.int.washington.edu/users/bertsch/computer.html 
•  Click on “Real-time method for level densities” 
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Level density phenomenological models 

§  Gilbert and Cameron formulation (1965) 
•  At low E, finite temperature model 

•  At high E, backshifted Fermi gas model 

•  Level density parameter a can be given E dependence 

Asymptotic value

Shell correction

Damping factor

Constrainted by matching the two parts, low-lying levels, 
and level spacing at neutron separation energy
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Level density: angular momentum and parity dependence 

§  Typically, we assume 

§  Using statistical arguments: 

§  Often, we make the simple assumption 

§  K(E) = collective enhancement factor 
•  Additional levels from collective vibrations and rotations of nucleus 
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Angular momentum distribution of levels 

Random orientations of nucleon spins + central limit theorem:

Pairing + temperature occupation probabilities for levels:

Energy dependence of spin cutoff parameter 𝛔2:
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Rotational enhancement 

𝝆(E,K)

Making Taylor expansion in energy 
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Rotational enhancement (continued) 

Energy dependence of spin cutoff parameter 𝛔⊥2:

B&M vol 2, Eq. (4.128)
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FISSION IN THE TRANSITION STATE 
MODEL 
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Fluctuations of fission widths 

Blons et al. (1970): 239Pu(n,f) from 200 to 1500 eV Broad distribution of fission widths

•  Fission widths vary greatly from resonance to resonance
•  Can we learn something from this?
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Width fluctuation statistics 

Partial width: decay to one channel

Transition matrix elements have Gaussian distribution about zero, therefore:

Decay width for many open channels:

Porter & Thomas (1956): width fluctuations related to number of open channels
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Distribution of fission widths 

Broad distribution of fission widths: 
consistent with few open channels

•  Fission width distribution suggests few open channels
•  But there are many exit channels: many divisions, many excited states

•  Estimated 1010 exit channels (Wilets, 1964)

Paradox solved by A. Bohr’s fission channel theory
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Bohr’s fission channel theory (1955) 

Fission 
barrier

•  For low-E fission:
•  Nucleus transits close to barrier top
•  Nucleus is cold at the barrier
•  Few transition states at such low energy
•  Many fission properties determined by 

few transition states at barrier, before 
scission!

Fission channels ≠ exit channels

What are the transition states?
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Solution of Schrödinger equation for saddle-shaped potential 

Motion in x and y can be separated:

Transverse 
eigenstates

Effective potential in 
direction of motion (x)
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Solution of Schrödinger equation for saddle-shaped potential 

Transmission probabilities (Bütticker, 1990):

E

T(E)

•  In experiments we don’t see this directly
•  Competition with  other channels 

(e.g., neutron emission)
•  Entrance channel effects

•  Can x and y be separated for realistic 
potential energy surfaces?
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The transition state model 

§  Originally used to calculate chemical reaction rates (Eyring, 1935) 
§  Adapted to fission rates by Bohr and Wheeler (1939) 

§  Transmission across a barrier 

class I

class II

A

B Fission

Fission

Deformation

En
er
gy

Transmission through 
one transition state

Density of 
transition states
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Transmission through an inverted parabolic barrier 

Solving the Schrodinger equation:

T E( ) = 1

1+ exp 2π
!ω

EB −E( )
⎛

⎝
⎜

⎞

⎠
⎟E

EB −E

V x( ) = EB −
1
2
µω 2 x − xB( )2

Example for ħω = 1 MeV and EB = 6 MeV
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The transition states 

§  At low E above barrier, states are labeled by J, K, 𝝅: 

§  At higher E, use level density 

z

z'

R

J

K

M

Angular distribution from 
Wigner “little d” function
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The discrete transition states 

From Lynn, FIESTA2014
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Application: angular distributions, measured and calculated 

Ryzhov et al., NPA 760, 19 (2005)
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Transmission through two weakly coupled barriers 

§  Fission rate from 2-step process 

§  Remember the all-important formula: 

§  Fission transmission coefficient: 

class I

class II

A

B Fission

Fission

Deformation

En
er
gy

Appropriate above barrier tops
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Transmission through two strongly coupled barriers 

§  Assume equidistant-level model for class-II states 

§  Fission probability from competition with other channels: 

§  Energy average 

class I

class II

A

B Fission

Fission

Deformation

En
er
gy

Other channels (e.g, n and 𝜸)

Where:

Appropriate below barrier tops
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Calculating transmission probabilities for any 1D potential 

Gilmore (2004): 1) Calculate 2×2 matrix depending on E and V:

V
L

E

2) Calculate transmission probability:

For a general potential:
1.  Break up into sequential rectangular barriers
2.  Calculate matrix M for each, Multiply them into single M matrix
3.  Calculate T(E) as in the 1-barrier case
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Application: transmission through double-humped barrier 
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•  Resonances below barriers
•  Above barriers: T(E) tends to 1 
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Application: transmission through triple-humped barrier 
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•  More complex resonance structure below barriers
•  Above barriers: T(E) tends to 1 
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PRACTICAL APPLICATIONS 
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Cross section evaluations: what’s involved? 

§  Measurements are inherently incomplete, and sometimes impossible 
•  Evaluation completes and complements measurements 

§  Fit measured data with physics models (e.g., as coded in TALYS) 
•  To fill in gaps in data for interpolation (and extrapolation, with caution) 
•  To tighten experimental uncertainties by imposing physical constraints 

§  Combine with other data, or merge with existing evaluation 
§  Quantify uncertainties (e.g., generate a covariance matrix) 

•  Points with error bars are often not sufficient 
•  Behavior at different energies is correlated through physics 
•  Covariance matrix accounts for correlations (to 1st order) 
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Application: evaluations using the TALYS code 

§  Remember: ”All models are wrong but some are useful” – G. Box 
§  TALYS is one of many other reaction codes (EMPIRE, GNASH, YAHFC, 

STAPRE,…)  
§  Easy to get, easy to use 

•  Download from: http://www.talys.eu/ 
•  Simplest input file: 

•  Running it: 

•  Output 
-  Lots, but we’ll focus on “fission.tot” for now 

projectile n
element U
mass 235
energy 14

talys < input > output

projectile n
element U
mass 235
energy energies

or
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TALYS example: 235U(n,f) 

0 5 10 15 20
Neutron energy (MeV)
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b)

ENDF/B-VII.1
TALYS (default)

235U(n,f)

Parameter defaults (usually) get you pretty close
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TALYS example: 235U(n,f) 

Adjusted barrier heights and curvatures for all U 
isotopes using Monte-Carlo parameter search
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TALYS example: 235U(n,f) 

•  Adjusted barrier heights and curvatures for all U isotopes and 
all fission-model parameters for 236U (Monte-Carlo search)

•  Total cross section is still well reproduced (could fit it along 
with fission xs if necessary)

Fission cross section
Total cross section
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Change in fit parameters (compared to default) 

T for 236U barrier 2

fisbar and fishw for 236U barrier 2

fishw for 235U barrier 2
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Adjusting model parameters and generating a covariance matrix 

§  Deterministic methods: e.g., Kalman filter 
•  linearize cross-section model and calculate its sensitivity matrix 

•  Both data and model parameters have a covariance matrix 
•  Linear equations derived from 𝛘2 minimization are used to update 

model parameter values and covariances for each new data set 
§  Stochastic methods: e.g, Markov Chain Monte Carlo 

•  Take random walk in parameter space 
- Guided by likelihood function (measure of how likely the data are 

given a set of model parameter values) 
•  Density of points visited gives probability distribution (and hence 

covariance matrix) in parameter space 
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Application to the surrogate reaction method 

•  Some reactions are too difficult to measure in the lab
•  Fission probabilities, Pf(E), from the same CN 

can be measured using a different reaction
•  Theory used to compensate for different angular 

momentum distributions between reactions

Justification:
•  We have a better understanding of the 

formation process than decay (fission)
•  Use measured fission probabilities to 

constrain transition-state fission model
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Dependence of fission probabilities on angular momentum 

Younes & Britt (2003)

235U(n,f)

•  Probabilities due to angular 
momentum distribution at barriers

•  Note low probabilities for 1+ and 0-

•  Few transition states with Jp = 
1+, 0- close to barrier top
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Results: fission cross sections from surrogate measurements 

Younes et al. (2004)
Younes et al. (2003)
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FUTURE OUTLOOK 
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Limitations of the transition state model 

§  The good: 
•  It works! 
•  Physics-based model 

§  The bad: 
•  Transition states are essentially free parameters (some evidence from 

experiment, but no stringent constraints) 
-  Can hide missing physics 
-  Solution may not be unique 

•  Emphasis on critical points in the energy surface (minima, maxima), but 
there is more to fission 

⇒  Descriptive, rather than predictive model 

A better starting point: protons, neutrons, and an interaction between them
⇒ microscopic model
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Different microscopic calculations of fission cross sections 

§  1D Transition state model with microscopic ingredients 
•  Fission barrier heights and curvatures 
•  Level densities at barriers 

§  Dynamical treatment of fission 
•  Configuration interaction: diagonalize H in space of orthogonal particle 

excitations 
•  Generator coordinate method (see talk by Schunck): diagonalize H in 

space of constrained mean-field solutions 
-  Discretize in deformation 
-  Expand to 2nd order in deformation → Schrodinger-like equation 

•  Diffusion models 

Dynamical treatment can be in many dimensions, does 
not assume Hill-Wheeler transmission
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From fission dynamics to cross sections 

§  Suppose you can solve TDSE to get 𝜳(t) describing fissioning nucleus 
§  Q: how do you calculate a cross section? 
§  A: calculate fission probability by coupling with particle & gamma emission 

at each time step 

1.  Choose random 0 ≤ r ≤ 1: emit something if 𝒙 > r 
2.  Choose random 0 ≤ r ≤ 1: emit n if r < 𝚪n/ 𝚪tot, otherwise 𝜸 
3.  Sample random energy from emission spectrum 
4.  Remove appropriate amount of spin 
5.  Continue fission with remaining mass, energy, spin 

After long time, obtain fraction of initial state that survives to fission
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Fission dynamics in the Generator Coordinate Method 

•  Start from protons, neutrons, 
and their interactions

•  Construct all relevant 
configurations of protons and 
neutrons and their couplings 
by constraining shape

•  Evolve in time over these 
configurations according to the 
laws of quantum mechanics

•  Measure the flow over time

•  In the long term, this will provide a microscopic alternative to transition-state model
•  In the short term, some challenges to overcome

•  Configs calculated by imposing “shape” ⇒ orthogonality issues
•  Currently, can only handle a limited number of degrees of fredom

•  Full calculation (5 collective + 10 intrinsic) ⇒ ~ 1015 times more couplings!

240Pu

In the meantime, there is room for an intermediate approach that uses 
some of the same the main ingredients

See lecture by N. Schunck for more



55 LLNL-PRES-734385

Concept behind the configuration-interaction approach 

§  Mean field and residual interaction 

•  Add and subtract mean-field potential V(1) (e.g., Hartree-Fock from 
protons + neutrons + effective interaction), and regroup terms 

•  Mean field → single-particle (sp) states 
•  Elementary excitations = multi-particle multi-hole (mp-mh) built on sp 

states 
•  Residual interaction mixes mp-mh configurations 

⇒  Dynamical evolution between mp-mh states 
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A discrete basis for fission 

§  Axial symmetry ⇒ K and 𝛑 are good quantum numbers 

§  Hamiltonian matrix breaks up into K𝛑 blocks along diagonal 

z

z'

R

J

K

M

•  mp-mh excitations with differing 
populations of the K𝛑 blocks are 
orthogonal
⇒   Useful, discrete state basis

•  Time evolution dictated by matrix 
elements between mp-mh configs

•  G. F. Bertsch, arXiv:1611.09484
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Fission dynamics in the discrete basis approach 

Deformation

En
er

gy

Discrete basis of mp-mh excitations 
can be arranged in layers:

Bertsch & Mehlhaff, arXiv:1511.01936

•  Diffusive approach to fission shows promise (e.g., Randrup & Moller, PRL 
106, 132503 (2011))

•  Obtain fission rate ⇒ fission width to use in Hauser-Feschbach formula
•  Research on this approach in progress…

•  Nucleus “hops” between discrete states

•  Evolution by diffusion equation:

•  Can also use average interaction from 
random matrix theory as a placeholder
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Some final thoughts 

§  Hauser-Feshbach formalism 
•  Simple but important formulas: 
•  Bohr hypothesis 
•  Level densities: combinatorial and phenomenological models 

§  Transition state model 
•  States at barrier and in between (class-II) mediate transition 
•  Hill-Wheeler formula gives transmission probability 

§  Microscopic approaches 
•  Generator coordinate method (see talk by N. Schunk) 
•  Discrete basis diffusion approach 

§  Some toys to play with 
•  TALYS 
•  Level density code by Bertsch & Robledo 



59 LLNL-PRES-734385

APPENDIX: SCATTERING THEORY 
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1D Scattering theory: the Schrödinger equation 

§  Time-dependent Schrödinger equation (TDSE): 

•  Assume continuously incident beam (e.g., plane wave): 

§  Can then use time-independent Schrödinger equation (TISE): 

§  Also, we’ll assume V(x) = V(-x) and V(x) = 0 for x > a 
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Wave function in the exterior region 

Outside range of potential: only plane waves

We can re-write this in a more suggestive form:

where

Incident 
wave

Scattering 
amplitude

Scattered 
wave

Note: in 1D only two possible scattering directions (forward or backward)
⇒ 𝛜 = ±1  (in 3D we cover 4𝛑 sr)
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A useful quantity: the probability current 

Particle flux

Let’s use our generic external wave function:

to calculate the current:

Now we have what we need to calculate cross sections
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The absorption cross section 

§  Measures loss of current due to potential: 

•  For V(x) = 0 or for pure scattering, 𝝈abs = 0 
§  Using jext from previous slide: 

Forward currentBackward current
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The scattering cross section 

§  Measures the current scattered in all directions (forward and back in 1D) 

§  Using our explicit formulas for the currents: 
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The total cross section 

§  Particles are either scattered or absorbed, so the total cross section is 

§  Using the explicit formulas for the cross sections obtained so far, we get 

§  Which is known as the optical theorem: it relates the total cross section to 
the forward scattering amplitude 

§  In 3D we get an almost identical formula: 
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Partial wave expansions 

§  In 3D it is convenient to write the reaction quantities (cross sections, 
scattering amplitudes, etc.) as a partial wave expansion, as function of 
orbital angular momentum ℓ  
•  Usually only lowest ℓ values are needed ⇒ simplifies calculations 

§  In 1D can’t define angular momentum, but we can use parity instead to 
illustrate the concept 

§  Any function can always be split into even and odd parts: 

We will now write partial (parity) wave expansions for various quantities
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Partial wave expansions: wave function 

§  External wave function (looks like plane wave, i.e. sin and cos, far away): 

•  Aℓ = constant coefficient to be determined (can be complex) 
•  𝜹ℓ = phase shift 

§  Check that ℓ = 0 term is even and ℓ = 1 term is odd (remember: 𝛜 = sign(x), r 
= |x|) 
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Partial wave expansion: scattering amplitudes 

§  From the previous slide, 

§  But we also have our old formula: 

§  Which we can split into even and odd parts (after a little math): 

§  Where we’ve also written: 
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Partial wave expansion: scattering amplitudes 

§  From the previous slide, 

§  But we also have our old formula: 

§  Which we can split into even and odd parts (after a little math): 

§  Where we’ve also written: 

Next: equate the 2 forms, 
deduce fk

(0) and fk
(1)
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Partial wave expansion: scattering amplitudes 

§  We get an the scattering amplitude components in terms of the phase shifts 

§  However, with this formula we find 𝝈abs = 0, so we make a slight 
modification to allow for absorption: 

§  And the partial wave expansion for the 1D scattering amplitude is then 
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Partial wave expansion: absorption cross section 

§  Using the partial wave expansion for the scattering amplitude, we get for 1D 

§  Compare with the 3D result: 

Note one difference between 1D and 3D cross-section formulas:
•  In 1D cross sections are dimensionless
•  In 3D cross sections have units of surface area
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Partial wave expansion: scattering cross section 

§  Using the partial wave expansion for the scattering amplitude, we get for 1D 

§  Compare with the 3D result: 
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Partial wave expansion: total cross section 

§  Using either 𝝈tot = 𝝈abs + 𝝈sca or the optical theorem, we get for 1D sca or the optical theorem, we get for 1D 

§  Compare with the 3D result 
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Example: 1D square well with coupled channels 

𝒙

-a +a
-V

Waves 𝚿1 and 𝚿2 are coupled through a potential Vc,
i.e. we must solve the following TISE:

One incident wave, two outgoing:
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Example: 1D square well with coupled channels 

Transformation decouples the TISE
•  Solve two independent equations for 𝚽+ and 𝚽-
•  Transform back to 𝚿1 and 𝚿2 
•  Calculate scattering amplitude 
•  Calculate cross sections

Goal: calculate cross sections associated with channel 1
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Cross sections 
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Let’s take a closer look at the absorption cross section next
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The absorption cross section, and its partial wave components 
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Can we understand the structure of the components?
What are those wiggles?
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Analyzing 𝝈abs: plan of attack 

§  Wiggles ⇒ energies where 𝝈abs is enhanced ⇒ resonances 
§  We want to write 𝝈abs(E) around those energies 

•  Calculate logarithmic derivative of wave function at boundary 

-  Contains all info about 𝚿(x) and V(x) needed to solve the TISE 
•  Write 𝝈abs(E) in terms of D(E) 
•  Identify energies where 𝝈abs(E) is enhanced 
•  Taylor expand 𝝈abs(E) around those energies 
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Resonance cross section 

§  Recall 𝓵 = 0 component of 1D wave function: 

§  Calculate the logarithmic derivative at the boundary 

§  Solve for 𝜼0 and calculate cross section assuming 𝜼0 is real (⇒ 𝜼0
2 = |𝜼0|2)  
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Resonance cross section 

§  So far we have: 

§  Note that 𝝈abs
(0) > 0 ⇒ y0 < 0 and also (y0 -ka)2 ≠ 0 

•  So 𝝈abs
(0) reaches local max when x0(E = Er) = 0 

§  Expand x0(E) about Er : 

§  Plug back into equation for 𝝈abs
(0) above 

From R-matrix theory:

This result does not depend on the explicit form of V(x)
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Resonances in our numerical example 
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Note: wherever x0 = Re{D0} has a 
negative slope, 𝝈abs

(0) has a maximum!

You can check for yourselves that the 
same type of resonant behavior occurs 
in the 𝓵 = 1 component, i.e. 𝝈abs

(1) 
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Alternate approach: the optical model 

§  Not to be confused with the optical theorem! 
§  Mimic absorption through complex potential: 

§  Solution outside is 

§  Next: calculate j(x)  (i.e., flux in 1D) 
•  If W = 0 then j(x) doesn’t depend on x ⇒ no absorption 
•  If W ≠ 0 then j(x) depends on x ⇒ absorption! 

In realistic 3D problems, the optical model potential 
looks more complicated and is tuned to data
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Resonances: link between time and energy pictures 

§  Consider state 𝚿(t) with decay lifetime 𝝉: 

§  To get energy dependence, take Fourier transform: 

§  Probability of finding state at energy E: 

Relation between width and lifetime of resonance peak: 𝚪 = ℏ/𝝉
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Multiple resonances 

§  Suppose there are many resonances in some interval ΔE 
§  Want compound cross section: a + A → C  (or C → a + A) 

•  Nucleus trapped behind barrier, making repeated attacks 
•  Reaction rate:  

§  Model: equidistant resonances: 
§  Solution of TDSE related to TISE solutions 𝝍n via 

§  Prob repeats at t, t+h/d, t+2h/d, … Therefore: Rb = d/h 


