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How to get the most out of these lectures

= See previous lectures from FIESTA2014, in particular J. E. Lynn’s slides and
notes on fission cross-section theory

= Difficult to absorb material during lecture
e At your leisure, go through slides and pretend you’re teaching
e Work through the examples (especially the 1D problems)
 Play with the codes (I will talk about a couple)
= Reaction theory and fission cross-section modeling is a vast topic
* These slides will not cover everything!
* Notes will contain references and suggestions for further reading
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Outline

= Compound nucleus reaction theory

e From resonances to Hauser-Feshbach cross-section theory
= Fission in the transition state model

A fission model for the Hauser-Feshbach formula
= Practical applications

e A cross-section code, and some thoughts about evaluations and
uncertainty quantification

= Future outlook
» Cross sections starting from protons, neutrons, and their interactions

= Appendix (I will not have time to go through this)
e Scattering theory
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COMPOUND NUCLEUS REACTION
THEORY
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Reminder: scattering theory

From Schrodinger equation to resonances (see appendix)
State with decay lifetime = has an energy spectrum (instead of definite E)

Ny h .
(E—E)2+l(ﬁ)2’ ;:I‘ledth
L 4 \7

Prob (E) =

Absorption cross section for partial wave with angular momentum €,

2 .
— ﬁ(%—l-l) (1 —-77[2)
| T

=T}

gy

= Transmission probability T, is related to width I" and level spacing d,

r
Tg = 271’ —
d
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Compound nucleus cross section

= For one resonance, we already showed:

5 (20+1) (1= el

N S

Op —

= Cross section for making a compound state:

ocn = 0¢ X Prob (E) = oy Ng 2
E — E, 5
( )"+ (3) Level density |
= Get N, from normalization condition: '
E,.+AE/2 No 1
dE EY=1, p(E)~-=
/E,_AE/z (E—E,)*+ FTQP( ) PE)~ 5

27 r,r
ocn = — (20+1
) o= ) (E-E,)*+ (L)
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Compound nucleus cross section: the Bohr hypothesis

= So far, for one open channela+A —C (orC —a+A)witha=a+A
r',r

VBB 6
= At higher E, more channels open up, then:

o '@ s = Prob. decay into 3

= Bohr hypothesis: reaction proceeds in two independent steps:
a+A—-C—=b+B
N~ 7

Tos = OCN X Ip _2m (2¢ +1) Lols
r k2 2 TadTs )2
(FE—FE.)" + (T)
Physical,
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Hauser-Feshbach theory

= (Caveat: Bohr hypothesis should not violate conservation laws (energy,
angular momentum, parity)!

= More general form fora+ A— C — b + B:

* Include statistical spin factor to account for random orientation of beam
and target nuclei

(n)(n)
T (QJc-l-l) | IpS FB
s (E,Jc) = 5 — | '
n 2

* Note sum over compound states n with energy = E and total spin J,.

Next: develop theory for energy-averaged
cross sections (= Hauser-Feshbach theory)
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Hauser-Feshbach theory

= Average out individual resonances (integral over AE = integral over *):

400 I‘,(;,")F(n) Iﬂgn)r(n)
/ dE = = zw—r(n)‘*
—00 (E . En)2 + (F("))

2

= Average out the sum over resonances by going to continuous limit:

AE 2T ~AEd BoAB)2 T(E)  d T (E)

= Average cross section:

T (2Jc +1) 2r [La (E)T5 (E)
(Uaﬁ (E JC)> AQ (2]a + ]_) (QJA + 1) d < r (E) >|
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Width fluctuation correction

= Much more useful to write in terms of average widths:

<ra (E)Tg <E>> _ . La (B)) (T (E))
I (E) — (T (R)

* W, = width fluctuation correction factor

 If we can describe widths by probability distributions, then we can
calculate W, ; explicitly

= Remember that

i
T, =2m ;
= Therefore: Oas (B, Ja)) = (2Jc +1) . TaTs
Oqf . JC = — - Vo ———
PO TR (240 +1) 2T+ 1) YT,
One more step: in practice we don’t observe J. (or the parity I1,)
Physical, g - - — - —
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The Hauser-Feshbach cross section

= The full formula (Hauser-Feshbach with width fluctuation):

J T,T;
aé’ LQ Z G YYYW Z Z §:J T

2]a+1 2JA+1

Jolle '0 n3 .73 \

Sum over spin Sum over Sum over spin

couplings in energetically couplings in exit

entrance channel allowed exit channel
channels

= For simplicity, we will assume W, =1
e Then we can sum over entrance (a) and exit () channels separately!

All that’s left to do is calculate the transmission coefficients!

Physical, |
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The neutron channel

Sums over all spin
and parity couplings

Parity selection rule |

o 3 ‘ch‘ ‘
2.2 Te=2_ 2. 2. D ucm (-1

ng Jjg £=Oj=|g_%|1=|Jc—j| T

E,—Sn
x/ deTy; (Ba — Sn — €) p (e, 1, 71)
0

* * *

Integral over neutron From optical model | Level density |
kinetic energies

Physical
Lifa sciaaid

LLNL-PRES-734385 L 12



The gamma channel

Sums over radiation character +
all spin and parity couplings Parity selection rule |

N |

2.2.Ts= 2. 2. 2. D 0uewax

ng jg X=FE.M L=0 J’=|JC—L| 7’
Ey
X/ dE’YfXL (5’7)/7(EI_E’Y’J,3”,)
0

* * *

Integral over photon Strength function, Level density |
energies from model
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The elephant in the room: level densities

=  We have used p(E) ~ 1/d
e Ok over small energy range, but not realistic otherwise
e Dependence on E, J, m?

= Fundamentally, this is a counting problem:

‘ E— Z( —eh)

e 1

e Loop through all proton and neutron multi-particle-multi-hole configs
o (Calculate E, J, T and store
e Count levels in each energy bin with given Jand T = p(E,J, i)

Hard to do without truncations and/or approximations

(also ignores residual interactions, like pairing)
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Counting energy states: Laplace transform trick

Physical,
L1fe Sc1ences

We want density of states of given particle number A and energy E:
ZZO(A—n 5 (E — En,) A=Y "n,, E,;i=) ng,
- ' @
Huge number Energy of Sums over
of terms! mp-mh state s.p. states

Take Laplace transform — partitibn function

Z(a,B)=L{p(A,E)}=>) Y eA=Fbn Still a huge
D number of terms!

Factorize sum into product over s.p. states

Z (o, B) = H (14 e*=Pev) « few terms!
v=1

Invert Laplace transform (numerically or by saddle-point approximation)
Can also include pairing by redefining n and E, ; sums over quasiparticles

LLNL-PRES-734385 L 15



Counting states: try this at home

= Alternate counting method: using Fourier transform

Computer Physics Communications 185 (2014) 3406-3411

B
COMPUTER PHYSICS
COMMUNICATIONS

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Combinatorial level densities by the real-time method™

G.F. Bertsch®*, L.M. Robledo®

2 Institute for Nuclear Theory and Department of Physics, Box 351560, University of Washington, Seattle, WA 98915, USA
® Departamento de Risica Te6rica, M6dulo 15, Universidad Aut Madrid, E-28049 Madrid, Spain

= Short python code at end of paper, or:
e http://Iwww.int.washington.edu/users/bertsch/computer.html
e C(Click on “Real-time method for level densities”
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Level density phenomenological models

= Gilbert and Cameron formulation (1965)
e Atlow E, finite temperature model

p(E) = el F-E/T

e At high E, backshifted Fermi gas model
o 1 /7 P [2\/a(E—A)]
)= (BE) 12 4(E - A)*?
* Level density parameter a can be given E dependence
Shell correction

a(U)za{Hi‘VU—e—W)] U=E—-A
UM ¥

Asymptotic value Damping factor

Constrainted by matching the two parts, low-lying levels,

Physical, q and level spacing at neutron separation energy
Life Sciences =
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Level density: angular momentum and parity dependence

Typically, we assume

= Using statistical arguments:

R — —_
P(E.J) = 2J+31 exp _(J+21/2) U_E”A
2v/2ma3 (U) 20° (U) A = pairing gap parameter

= Often, we make the simple assumption

P(E,7r)=§

= K(E) = collective enhancement factor
o Additional levels from collective vibrations and rotations of nucleus

Physical
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Angular momentum distribution of levels

Random orientations of nucleon spins + central limit theorem: |

p(E,K) = p(E) x ——exp (—K—z)

2o 202

Pairing + temperature occupation probabilities for levels: |

1
fo=Trem A= Be= o0+ a2

Energy dependence of spin cutoff parameter o2: |
= 2 E of

k>0

o2 = (m2) — (my)® = m? fi, — (M fr)” |

5 XY () st (22

q=n.,p k>0

Physical,
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Rotational enhancement

Adding rotational levels prot (E,J) = Z p(E—Eot (J,K),K)

K=—

Qo 202

1 K?
pEK) | p(E,K) = p(E) x —o—exp (——)

h2
By (']aK) = E [J(J+1) _K2]

Making Taylor expansioninenergy | p(E + 0FE) =~ p(E)exp (,8(5E)|

1 d
B = T = Elnp(m)

r=F

Physical,
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Rotational enhancement (continued)

prot (B,.7) = 2E) e [—" Sl *”] S exp (—K—Q)

2 2
201 K= 205

—1
02 . 3_]_ 0_2 o ( ]. 1 )
1 = 395> eff — 2 2
h4p o ol
Energy dependence of spin cutoff parameter o | 2: I

B&M vol 2, Eq. (4.128) | o (@) = In (z + V1 + 22)
zvV 1+ x?
hwgp0

j_szriidll_g( )]
g 2A Trigid = %AMRz (1 + g)
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FISSION IN THE TRANSITION STATE
MODEL
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Fluctuations of fission widths

O (sarms) N
@ Distribution expérimentale
@ (2 Somme de 2 distributions en X’

171 niveaux,<>:355 mev, V:1.
58 niveaux, < [[>:2270 mev, V:14.

wor

1.8 2 2.9

VR

Blons et al. (1970): 23°Pu(n,f) from 200 to 1500 eV | Broad distribution of fission widths |

» Fission widths vary greatly from resonance to resonance
« Can we learn something from this?

Physical
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Width fluctuation statistics

Partial width: decay to one channel | Fi_>f X |(f |H| Z) |2|

Transition matrix elements have Gaussian distribution about zero, therefore: |

1 x I';
P (z) = ex (——) , T = ks I
1 () V21T PLT3 (Lisg)
Decay width for many open channels: | Pz‘ — Z Fz‘—> f

% vr\v/2—1 vx T,
» b (@) = r(:/Qz)( ) =P (_7)’ )

Porter & Thomas (1956): width fluctuations related to number of open channels |

Physical,
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Distribution of fission widths

P(x,v)

:V=1 1 N
@ Distribution expérimentale

@ @ Somme de 2 distributions en X’
171 niveaux,< [ >:35,5 mev, V:1.
!ﬂor 58 niveaux, < I >:2270 mev, V:14.

VG

Broad distribution of fission widths:

T e e consistent with few open channels

+ Fission width distribution suggests few open channels
« But there are many exit channels: many divisions, many excited states
- Estimated 107 exit channels (Wilets, 1964)

Paradox solved by A. Bohr’s fission channel theory |
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Bohr’s fission channel theory (1955)

J: For low-E fission:
- * Nucleus transits close to barrier top
* Nucleus is cold at the barrier
* Few transition states at such low energy
« Many fission properties determined by
few transition states at barrier, before
scission!

Fission
barrier

Fission channels # exit channels |

What are the transition states? |

Physical, u-
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Solution of Schrodinger equation for saddle-shaped potential

1 1
V(z,y)=Vy— §mwgw2 n imwzyz

Motion in x and y can be separated: |

Transverse ‘ E =Vt hw (n+ 1

eigenstates n— "0 y 2

Effective potential in Ve o B 1y 1. 455 \
direction of motion (x) p 0+ My (n T3 g MW
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Solution of Schrodinger equation for saddle-shaped potential

Transmission probabilities (Butticker, 1990): |

T, (E) = L  T(BE)=) T.(E)
1+ exp [—hi—’; (E — hw, (n—l—%)—VO)] n

T(E)
* In experiments we don’t see this directly
« Competition with other channels
(e.g., neutron emission)
« Entrance channel effects
« Can x and y be separated for realistic
potential energy surfaces?
E
Physical,, g
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The transition state model

= Originally used to calculate chemical reaction rates (Eyring, 1935)

class II

class I

Deformation

= Transmission across a barrier

oo

Tf (Ey, J,m) =/ deT (Ey — Ey — <€) p(e, J,m)
0 ‘_
Transmission through Density of
one transition state transition states

Physical
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Transmission through an inverted parabolic barrier

Solving the Schrodinger equation:

V(x) =E, —%,ua)2 (x—xB)2

T(E)

Example for iw =1 MeV and E, =6 MeV |ERD

10

Physical, L
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The transition states

= At low E above barrier, states are labeled by J, K, m:

Angular distribution from
Wigner “little d” function

I ’ 5
W Wik (60) o< |dizsc (6)]”)

= At higher E, use level density

pro (B, 7) = L) exp |- 1021 3 exp (~oer)

\J

V270 204 K 2024
20T +1 < 2 K?
W(0,J,M) 5 K;JV%K (6)] exp <_za§ )

Physical
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The discrete transition states

* Inner barrier (even nucleus):
* KT™=0%-"“ground”
+ rotational band (J * = 2%, 4%..))
h’ / 23 =3.5keV
e Gamma vibration, K™= 2* - ~ 200keV
+ rotational band (3%, 4%...)
e Gamma vibrations, K*=0* , 4*-
~400 to 500 keV
+ rotational band (2%, 4*...; 5%, 6*resp. )

e Mass asymmetry vibration, K*=0" -
~T700keV

+ rotational band (1, 3°...)

¢ Bending vibration, K*=1" -~ 800keV
+ rotational band (2-, 3°...)

e Combinations of above

QOuter barrier:
K*=0%-“ground”
+ rotational band (/7 = 2%, 4*...)

h* /23 =2.5keV
Mass asymmetry vibration, K= 0"
- ~100keV
+ rotational band (1, 3-...)
Gamma vibration, K*=2* - ~
800keV
+ rotational band (3%, 4*...)
Gamma vibrations, K *= 0%, 4*-
~1.5MeV + rotational band (2%, 4*
..; 5%, 6% resp. )
Bending vibration, K7=1- -~
800keV
+ rotational band (2, 3-...)

Combinations of above

Physical,q

From Lynn, FIESTA2014
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Application: angular distributions, measured and calculated

T T T T Y T T T
2.0 =
**Th (n,f) A Henkel, 1956
T 1 o Shpak, 1972
— 15 4 *  Androsenko, 1982
J o ' ®  this work, exp.
this work, calc.
Body ( Separation) 1.0 -
Axis —
1
S 0.5 -
(=)
S
= A
- _) Spoce ~ 0.0 ] A T T T T T T T T ]
Pl Axis N A Henkel, 1956
| S 238 U(n f) O Simmons, 1960
N - B i ’ ¥ Androsenko, 1982 |
~—— 1.0
/ K o Shpak, 1989
% Vv  Afariden, 1990
E :. O  Vives, 1997

® this work, exp.
this work, calc.

1 0.5
W) x ——— /dEW(e,A,Z,J,M,E)
U(Tlaf) (E) A,Zz,.;,l\/f
X 0(n.5) (A, Z,J,M, E) »
. (') 2I0 46 6(; 80I 100
E (MeV)

Ryzhov et al., NPA 760, 19 (2005) |

Physical,, g L
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Transmission through two weakly coupled barriers

= Fission rate from 2-step process

NN
Ry = ’_{ 1\ E [ \EB A~ myp
Ry = Ri11 X Prisy Ty : — e
Pri 5= N
I Thor+ Uiy -

Deformation

2T
= Remember the all-important formula: 7o = d—l“a_>,s

= Fission transmission coefficient:

I's=hR; = X Ty = 7
f = o T, +Tx I T Th+Tp
Appropriate above barrier tops |
Physical,, g
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Transmission through two strongly coupled barriers

= Assume equidistant-level model for class-Il states

Ei=Eo+nd;r) | -

T ANAL

T; (E) = Uity
B 2
n=—co [E — (Eo + ndr1)]* + (F”—”;F”—u)

class I

Deformation

= Fission probability from competition with other channels:

_ Ty (E)
Ps (E) = Ty (E) @F Other channels (e.g, n and y) |

= Energy average

(F 7 A 1+ (7)< (7) e (P57)]
Pr=— dEPs(E)= |14+ | =) +2| = | coth
d drp Eo—d;;/2 f() Ty Ty B

Where: |

7 _ _TaTp
I Ta+Tg

Appropriate below barrier tops |
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Calculating transmission probabilities for any 1D potential

Gilmore (2004): | 1) Calculate 2x2 matrix depending on E and V: |
> E o cos(kL)  —Lsin(kL)
= ( +ksin (kL)  cos(kL) , E>V
L
1 4 1 T cosh(kL)  —+sinh (kL)
k=gVimE k=g vemb M = ( —ksinh (kL)  cosh (kL) , E<V
- 4
1 —L
nz%\/2m|E—V|| M:( 0 1 ), E=V

2) Calculate transmission probability: |
4
(M11 + Ma)® + (kMyz — My /k)?

T (E) =

For a general potential:

1. Break up into sequential rectangular barriers

2. Calculate matrix M for each, Multiply them into single M matrix
3. Calculate T(E) as in the 1-barrier case

Physical, L
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Application: transmission through double-humped barrier

[ | T 10
5 .
I ’ul’ 'N..‘ -
, A h
—~ 4F " \.
L f L
S | / 107°F
g 3} .
5 w
\é E \ ‘ = 10—14 L
g 2¢
w 10—19 L
1}
I 10—24 L
O: Il Il Il 1 Il
| o 5 10 15 E 3 4 5 6
Deformation (arb. units) Energy (arb. units)
« Resonances below barriers
« Above barriers: T(E) tends to 1
Physical, u_
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Application: transmission through triple-humped barrier

Energy (arb. units)

[ 10—1:, =
5r [
: 11T '
[ / \
4,
[ 10—11
3t m)
: =
2 - 10721
1 [
I 10-31}
0=t
0 5 10 15 . ° 4 5 °
Deformation (arb. units) Energy (arb. units)
* More complex resonance structure below barriers
* Above barriers: T(E) tends to 1
Physical,, g
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PRACTICAL APPLICATIONS
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Cross section evaluations: what’s involved?

= Measurements are inherently incomplete, and sometimes impossible
e Evaluation completes and complements measurements
Fit measured data with physics models (e.g., as coded in TALYS)
* Tofill in gaps in data for interpolation (and extrapolation, with caution)
e To tighten experimental uncertainties by imposing physical constraints
= Combine with other data, or merge with existing evaluation
= Quantify uncertainties (e.g., generate a covariance matrix)
 Points with error bars are often not sufficient
e Behavior at different energies is correlated through physics
 Covariance matrix accounts for correlations (to 15 order)

Physical
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Application: evaluations using the TALYS code

= Remember: "All models are wrong but some are useful” - G. Box

= TALYS is one of many other reaction codes (EMPIRE, GNASH, YAHFC,
STAPRE,...)

= Easy to get, easy to use
* Download from: http://www.talys.eu/

e Simplest input file:

projectile n projectile n

element U or element U

mass 235 mass 235

energy 14 energy energies
e Running it:

talys < input > output
e Output
— Lots, but we’ll focus on “fission.tot” for now

Physical, L
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TALYS example: 2°U(n,f)

3000 T T T T T T T T T T T T | T T T T

— ENDF/B-VII.1
— TALYS (default)

2500

2000 |

1500

Cross section (mb)

1000

500

| 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 1 1 1 1
10 15
Neutron energy (MeV)

S
W
[\S)
o

Physicalung Parameter defaults (usually) get you pretty close |

Life Sciences
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TALYS example: 2°U(n,f)

2500 T T T T

— ENDF/B-VIL.1 .
— TALYS (default)

- =+ TALYS (barriers)

2000 [

1500

Cross section (mb)

1000

1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
500
5 10 15 20
Neutron energy (MeV)

Adjusted barrier heights and curvatures for all U
, isotopes using Monte-Carlo parameter search
Physical,q

Life Sciences uL' 83
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TALYS example: 2°U(n,f)

Fission cross section

2500 f—

Total cross section

10000 f———T————

L} |— ENDE/B-VI1
LIl |— TALYS (default)
9000

2000

g £ 8000
g 1500 ::,j,

3 £ 7000
& s

1
1000 —,

P —— ENDF/B-VLI .

K R —— TALYS (default) | o000
Ly -~ -~ TALYS (barriers) ]
Lo - TALYS(barricrs+fullﬁssionmodclform’U) 1 I
N T 5000 5 10 15 20
500 5 10 15 20 Neutron energy (MeV)
Neutron energy (MeV)
« Adjusted barrier heights and curvatures for all U isotopes and
all fission-model parameters for 236U (Monte-Carlo search)
+ Total cross section is still well reproduced (could fit it along
with fission xs if necessary)
Physical,, g L
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Change in fit parameters (compared to default)

02 I T T T T I T T T T I T T T T I T

fisbar and fishw for 236U barrier 2 |

1

fishw for 23°U barrier 2 | &= T for ;36U barrier 2

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 -I
10 20 30
Parameter number

Relative change
o
TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT l TTTT

o

Physical
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Adjusting model parameters and generating a covariance matrix

= Deterministic methods: e.g., Kalman filter
* |inearize cross-section model and calculate its sensitivity matrix

0
SJ apja( » P1, s Pj s )
e Both data and model parameters have a covariance matrix

 Linear equations derived from x2 minimization are used to update
model parameter values and covariances for each new data set
= Stochastic methods: e.g, Markov Chain Monte Carlo

e Take random walk in parameter space
— Guided by likelihood function (measure of how likely the data are
given a set of model parameter values)
 Density of points visited gives probability distribution (and hence
covariance matrix) in parameter space

Physical, L
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Application to the surrogate reaction method

(n) « Some reactions are too difficult to measure in the lab
« Fission probabilities, P;(E), from the same CN

236y 2387 . can be measured using a different reaction
] , s.\_‘_\""w’ﬁssmn « Theory used to compensate for different angular
2y 4Ty momentum distributions between reactions

Angular momentum dependence

(tp) ,.,
Basic technique: s
Measure Calculate Fit model S
g 1 7 /€
Pitp(Ex) = 2 Papf(J™) x Pr(Ex, J™) AN
Jr ‘ : ¢
Reuse .
‘ Justification:
* We have a better understanding of the
J— T T
S (En) = %00"’ (En, J7) x Pt (Ex, J7) formation process than decay (fission)
! } ) + Use measured fission probabilities to

Deduce Calculate constrain transition-state fission model
Physical, L
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Dependence of fission probabilities on angular momentum

1-0""I""I"E"I""I""l"
Y ) 235U(n,f) |
0.8 ‘ 4
0.6
04
0.2
* Probabilities due to angular
0.0 | ; momentum distribution at barriers
L o) ] * Note low probabilities for 1+ and 0
08 - . + Few transition states with Jp =
| 1+, 0" close to barrier top
0.6
o
04
0.2
0.0
E, (MeV)
Younes & Britt (2003) |
Physical,, g
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Results: fission cross sections from surrogate measurements

25 l l
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I £ ] o - ® -
F 3 5
10" EHAEHHHH R P 00 - - O' ' I
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FUTURE OUTLOOK
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Limitations of the transition state model

= The good:

e It works!

e Physics-hased model
= The bad:

* Transition states are essentially free parameters (some evidence from
experiment, but no stringent constraints)

— Can hide missing physics
— Solution may not be unique

e Emphasis on critical points in the energy surface (minima, maxima), but
there is more to fission

= Descriptive, rather than predictive model

A better starting point: protons, neutrons, and an interaction between them
= microscopic model
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Different microscopic calculations of fission cross sections

= 1D Transition state model with microscopic ingredients
 Fission barrier heights and curvatures
e Level densities at barriers

= Dynamical treatment of fission

 Configuration interaction: diagonalize H in space of orthogonal particle
excitations

» Generator coordinate method (see talk by Schunck): diagonalize H in
space of constrained mean-field solutions

— Discretize in deformation
— Expand to 2" order in deformation — Schrodinger-like equation
 Diffusion models

Dynamical treatment can be in many dimensions, does
not assume Hill-Wheeler transmission

Physical, g u-
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From fission dynamics to cross sections

= Suppose you can solve TDSE to get ¥(t) describing fissioning nucleus
= Q: how do you calculate a cross section?

= A: calculate fission probability by coupling with particle & gamma emission

at each time step At
ZT

At = time step

Ttot
h

Ttot = ;
Ftot '

1_‘tot — Fn + F'}'

Choose random 0 <r < 1: emit something if x > r
Chooserandom 0 <r=<1:emitnifr<TI, /T, otherwise y
Sample random energy from emission spectrum

Remove appropriate amount of spin

Continue fission with remaining mass, energy, spin

S

After long time, obtain fraction of initial state that survives to fission
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Fission dynamics in the Generator Coordinate Method

« Start from protons, neutrons,
and their interactions

« Construct all relevant
configurations of protons and
neutrons and their couplings
by constraining shape

« Evolve in time over these
configurations according to the
laws of quantum mechanics

* Measure the flow over time

See lecture by N. Schunck for more |

* In the long term, this will provide a microscopic alternative to transition-state model
* In the short term, some challenges to overcome
« Configs calculated by imposing “shape” = orthogonality issues
« Currently, can only handle a limited number of degrees of fredom
* Full calculation (5 collective + 10 intrinsic) = ~ 10'° times more couplings!

In the meantime, there is room for an intermediate approach that uses
, some of the same the main ingredients
Physical,q
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Concept behind the configuration-interaction approach

= Mean field and residual interaction

_ (1) (2) (3)
H = T + V + V —
kinetic interaction interaction
(1-body) (2-body) (3-body)

 Add and subtract mean-field potential ' (e.g., Hartree-Fock from
protons + neutrons + effective interaction), and regroup terms

H = 7(1) +V(1) +V(2)+V(3) +_V(1)

N 7 7

mean-field Hamiltonian residual interaction

e Mean field — single-particle (sp) states

* Elementary excitations = multi-particle multi-hole (mp-mh) built on sp
states

e Residual interaction mixes mp-mh configurations
=> Dynamical evolution between mp-mh states
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A discrete basis for fission

= Axial symmetry = K and 1t are good quantum numbers

Y

= Hamiltonian matrix breaks up into K™ blocks along diagonal

+
( K™ = ! \  mp-mh excitations with differing
2 populations of the K™ blocks are
Kk 1 orthogonal
H = 2 = Useful, discrete state basis
3+ « Time evolution dictated by matrix
K" =3 elements between mp-mh configs

 G. F. Bertsch, arXiv:1611.09484

N}

Physical, g u-
Life Sciences LLNL-PRES-734385 5




Fission dynamics in the discrete basis approach

Discrete basis of mp-mh excitations  Nucleus “hops” between discrete states
can be arranged in layers:

L] s e ®m o

. « Evolution by diffusion equation:

oP 0 oP
o =0 ag

e o
L]
e 90 © ¢ 00 00 o 0 B0
-

(XX L] LR J o

P = probability distribution

g = shape variable

Energy

Deformation

D (q) = diffusion coefficient = 27p (E) (qa — q5)> (¢ |Vyes| B)*
Bertsch & Mehlhaff, arXiv:1511.01936 (@) sion coefficient = 2mp (E) (¢a — 45)” (| Vres| )

« Can also use average interaction from
random matrix theory as a placeholder

- Diffusive approach to fission shows promise (e.g., Randrup & Moller, PRL
106, 132503 (2011))

» Obtain fission rate = fission width to use in Hauser-Feschbach formula

* Research on this approach in progress...
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Some final thoughts

Hauser-Feshbach formalism o
e Simple but important formulas: 7To—s = EFMB
e Bohr hypothesis
e Level densities: combinatorial and phenomenological models
Transition state model
 States at barrier and in between (class-ll) mediate transition
 Hill-Wheeler formula gives transmission probability
= Microscopic approaches
» Generator coordinate method (see talk by N. Schunk)
e Discrete basis diffusion approach
=  Some toys to play with
o TALYS
» Level density code by Bertsch & Robledo
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APPENDIX: SCATTERING THEORY
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1D Scattering theory: the Schrodinger equation

= Time-dependent Schrodinger equation (TDSE):

0 h? 92
hzalll (z,t) = ~ 5 A2

U(z,t)+V (x)V(x,t)

e Assume continuously incident beam (e.g., plane wave):

Ui (2,) = k=)

= Can then use time-independent Schrodinger equation (TISE):

h? 02 h2 k2
— U(z,t)+V (z)V (x,t) =

U (z,t)

= Also, we'll assume V(x) = V(-x) and V(x) =0 for x > a
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Wave function in the exterior region

Outside range of potential: only plane waves |

A_ehT L B_e~thT o « _q

Vet () = . .
Xt ( ) A+82k$ + B+e—zk.1: xr > +a

We can re-write this in a more suggestive form: |

eyt (z) = % + %fk (€) €™ | where | e=sign(z), r=lz[=ex |

Incident Scattering
wave amplitude

Note: in 1D only two possible scattering directions (forward or backward)
= e =%1 (in 3D we cover 4n sr)

Scattered
wave
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A useful quantity: the probability current

, hi | OW* L0V Particle flux |
T [Ba:q’_q'%] =) D o-|ji
3D: ®=7-dA

: )
Let’s use our generic external wave function: | Wyt () = kT 4 T fr (€) etkr

to calculate the current: |

hk hk € hk 1 -
) - o i(e—1)kzx
ot =+ |fi () ——7Im [(1+¢) fic () V]
omk _mk
incident scattered interference

Now we have what we need to calculate cross sections |
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The absorption cross section

= Measures loss of current due to potential:

Backward current Forward current |

Oabe = Jext (6 — _1) — Jext (5 = +1)
T |jinc|

 For V(x) = 0 or for pure scattering, 5, =0
= Using j,, from previous slide:

7abs =~ 75 (Ife (CDP +1fic (F1)) + 2Tm [ (+1)

Physical
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The scattering cross section

= Measures the current scattered in all directions (forward and back in 1D)

o _ jext (6 — _1) + jext (6 — +1)
- |jinc|

= Using our explicit formulas for the currents:

Tuea = 73 (11 (D + i (+1))
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The total cross section

Particles are either scattered or absorbed, so the total cross section is

Otot = Osca T Oabs

= Using the explicit formulas for the cross sections obtained so far, we get
2

Otot = ZIm [fk ("‘1)]

.

=  Which is known as the optical theorem: it relates the total cross section to
the forward scattering amplitude

= |n 3D we get an almost identical formula:

4

Oiot = ?Im [fx (0 =0°)]
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Partial wave expansions

= In 3D itis convenient to write the reaction quantities (cross sections,
scattering amplitudes, etc.) as a partial wave expansion, as function of
orbital angular momentum €

e Usually only lowest € values are needed = simplifies calculations

= |n 1D can’t define angular momentum, but we can use parity instead to
illustrate the concept

= Any function can always be split into even and odd parts:

1

9(x) = 510 () +9(~2)]+ 3 [g () — g (~2)

N 7 N 7

even=gs—o(x) odd=gs—1(x)

We will now write partial (parity) wave expansions for various quantities
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Partial wave expansions: wave function

= External wave function (looks like plane wave, i.e. sin and cos, far away):

1
Uext () = Z e‘ Ay cos (Lr + 5% + 5(’)

£=0

« A, = constant coefficient to be determined (can be complex)
e J,=phase shift
= Check that € =0 term is even and € = 1 term is odd (remember: € = sign(x), r

= [xI)

Physical
Lifa sciaaid

LLNL-PRES-734385 L 67



Partial wave expansion: scattering amplitudes

From the previous slide,
1

Uext () = Z et Ay cos (kr + Eg + 5g)
¢=0

But we also have our old formula:
\I’ext (.’L’) _ ezk:z: 4 Efk (6) ezkr
Which we can split into even and odd parts (after a little math)'

\I,ext (.CL') — [COS kr R f(o) zk'r:| - € [Z sin kr 4+ — f(l) Zk'r:|
—\/_/

even odd

= Where we've also written: fx (€) = fL) +ef."”
\/ N~
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Partial wave expansion: scattering amplitudes

From the previous slide,
1

Uort (z) = 3 €Ay cos (kr + eg + 53) ﬁ
£=0

But we also have our old formula:

Next: equate the 2 forms,
deduce f,(@ and f, (")

\I’ext (CL‘) — ezk:z: 4 Efk (6) ezkr
Which we can split into even and odd parts (after a little math)' l

\I’ext (l’) — [COS kr R f(o) zk'r:| + € [Z sin kr 4+ — f(l) Zk'r:|

even odd

= Where we've also written: fx (€) = fL) +ef."”
\/ N~
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Partial wave expansion: scattering amplitudes

=  We get an the scattering amplitude components in terms of the phase shifts

€ _k

k._%(ém—JL E:OJ|

= However, with this formula we find o, = 0, so we make a slight
modification to allow for absorption:

k
(f) (77 210 _ 1), £=0,1 | ne < 1 = absorption

= And the partial wave expansion for the 1D scattering amplitude is then

A 1
:2_2612 22'53_1)
(]

£=0
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Partial wave expansion: absorption cross section

= Using the partial wave expansion for the scattering amplitude, we get for 1D

= Compare with the 3D result:

Q
3
o
w
[
o
e
M
——
o
(N
+
[
s ——
~
(S
I
—
Y ]
|

Note one difference between 1D and 3D cross-section formulas:
* In 1D cross sections are dimensionless
* |In 3D cross sections have units of surface area
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Partial wave expansion: scattering cross section

= Using the partial wave expansion for the scattering amplitude, we get for 1D
1

, 1
Osca = Z [2778 Sln2 613 + § (1 _ 77@)2]
=0

= Compare with the 3D result:

M , 1
Osca — ﬁ Z (2€ + ]') |:277€ Sln2 5@ + 5 (]' — 77@)2‘
£=0
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Partial wave expansion: total cross section

= Using either o, = 0, *+ 0, Or the optical theorem, we get for 1D
1

Otot = Z [2772 sin’ 0¢ + (1 — 778)]
=0

= Compare with the 3D result

2 o0
Ttot = k_g (20 +1) [27}5 sin? &y + (1— ng)]

£=0
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Example: 1D square well with coupled channels

One incident wave, two outgoing: |

U, (z) = " 4 Rje™*Fe U, (z) = Tye*
\112 (ZL‘) = Rze_ikm \112 (.’17) = Tgeikx

Waves ¥, and ¥, are coupled through a potential V_,
i.e. we must solve the following TISE:

s (ue )-(v. ¥ ) (0)-2(u&)
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Example: 1D square well with coupled channels

o 5 () (4 ¥)(h)-=(4)

® (@) (% ) (2E)-p(26)

" 29mdx? \ O_ (z) 0 d_ () d_ (z)

Transformation decouples the TISE

« Solve two independent equations for ®_ and &
Transform back to ¥, and ¥,
Calculate scattering amplitude

« Calculate cross sections

Goal: calculate cross sections associated with channel 1 |
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Cross sections

2_m = 0.05
2
V =40
V. =20
a=>5
(e

T T LI B T T T T T T T T T T T T ]
O ,»,4’ t -~
o N /S e T - =
5 , ~]
- 7 .
-
/
L / |
g J
= -1
210 F / =
. C o ———— / ]
? - / === Oubs T
- ~ / -
&) AN 2 Oseca 4
L \\ II — Ot .
N /
-2 \ I
107 F o =
r \ 7
C \ / ]
C \ ]
L N |
10-3 Ll |||||||1 I I |||||||2 I I
10 10 10

Incident energy

Let’s take a closer look at the absorption cross section next |

LLNL-PRES-734385 L 76



The absorption cross section, and its partial wave components

10

Cross section

10

w

10

T
\

e ————

\

I Ll

n

I

I
v

I
o

10"

Incident energy

10

2

10
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Can we understand the structure of the components?
What are those wiggles?
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Analyzing o, .: plan of attack

= Wiggles = energies where o, is enhanced = resonances
= We want to write o, (E) around those energies
 Calculate logarithmic derivative of wave function at boundary

a O
D= U (r) 87’@ ()

r=a

— Contains all info about W(x) and V(x) needed to solve the TISE
* Write o, (E) in terms of D(E)

* |dentify energies where o, (E) is enhanced
 Taylor expand o, (E) around those energies

Lal's
(E - E,)* + (f=fte )2

~J
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Resonance cross section

= Recall # =0 component of 1D wave function:

k :
\Ilext (.’L‘) = COS kr —+ f(o) Zkr, IEO) — 2— (7]062260 — ].)
1

= (Calculate the logarithmic derivative at the boundary
_e—ika 4 770622'60 ez'ka

Dy = ika e—ika | poe2id0 gika

= Solve for 17, and calculate cross section assuming n, is real (= 1,2 = |n,|?)

—2kayg
z§ + (yo — ka)

-0 _ 1
2 (1

abs

—n5) = 5, Do = xo + 1y
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Resonance cross section

So far we have:
(0 —2kayqg
Tabs — .’E% n (yO . k:a)2
= Note that ,,.¥ >0 = y, <0 and also (y,-ka)?> # 0
* Soa,, Y reaches local max when x,(E=E) =0
= Expand x,(E) about E, :

From R-matrix theory: |

d:L'o (E)
- _ dzo (E
zo (E) dE E=E, (&= Er) 7o { . <0
= Plug back into equation for ,,.%) above r
—2ka
@ L Talp ' = W/d,,, "
abs 9 E' E' r, +I‘,3 2 "
( ) +< ) I'g = 0 >0

B (d$0/dE)|E=Er

This result does not depend on the explicit form of V(x)
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| example

in our numerica

Resonances

(14
o =
N -
—_~ V
Do "
- S3]
() I
oc 3]
] —
€3
s
=
=

negative slope, 7, has a maximum!
You can check for yourselves that the

Note: wherever x,

same type of resonant behavior occurs

in the £ =1 component, i.e. o, ("

T o e e et e o e T o e e T e e e o o e e e

\n < «@ N = =)
=) o =] o S

400 600 800

200

1000

Incident energy
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Alternate approach: the optical model

= Not to be confused with the optical theorem!
= Mimic absorption through complex potential:

V () -V —iW |z| <a
Tr) =
0 lz| >0

= Solution outside is

U (z) = Ae"™ + Be """, k= % (E+V +iW)

= Next: calculate j(x) (i.e., flux in 1D)
o [f W=0 then j(x) doesn’t depend on x = no absorption
o If W# 0 then j(x) depends on x = absorption!

In realistic 3D problems, the optical model potential
looks more complicated and is tuned to data
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Resonances: link between time and energy pictures

= Consider state W(t) with decay lifetime :

Prob (t) = ¥ (t)|* = ¥ (0)|* e=*/7
= (t) — U (0) e—z’Ert/he—t/(Q'r)

= To get energy dependence, take Fourier transform:
1 [T hi W (0) 1
®(E)= — dt P (t) = .
B =7 | w0 = " e

= Probability of finding state at energy E:

2T (0))? 1
N 2]: /(E_Er)2+i(

Np=norm

= [' = width

Prob (E) = |® (E)|?

S | S

)

S 3

Relation between width and lifetime of resonance peak: T = #/t |
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Multiple resonances

= Suppose there are many resonances in some interval AE

=  Want compound cross sectionia+A — C (orC —a+A)
* Nucleus trapped behind barrier, making repeated attacks
e Reactionrate: 1

— = Tf X Rb
Ta N~~~ S~~~
crossing prob. attack rate

= Model: equidistant resonances: E» = E +nd, n=0,%+1,%+2,...
= Solution of TDSE related to TISE solutions ), via

U (t) =) anthpeFrt/h » T @) = |3 angpeindt/?

2

n

= Prob repeats at t, t+h/d, t+2h/d, ... Therefore: R, = d/h

» Tezwzzﬂz
Ta d
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