Modernizing the Fission Basis: Short Lived Fission Product Yield Measurements in $^{235, 238}\text{U} \& ^{239}\text{Pu}$

FIESTA2017

September 19, 2017

Jack Silano
Fission Product Yields (FPYs)

- Shape and energy evolution of FPY mass distribution is a sensitive probe of the fission process
- Need for high-precision FPY data
 - Stockpile Science
 - Nuclear Energy
 - Nuclear Forensics
 - Antineutrino Anomaly
 - Benchmark for Microscopic Fission Models

Fission Product Yields Landscape

- Neutron-rich fission products β-decay to stability
- Identify with E_γ and $t_{1/2}$
- Determine cumulative & independent yields
FPY Energy Dependence

- Positive trend from 0-4 MeV observed in some high-yield fission products
- Needs theoretical explanation

Dual Fission Chamber

- Precise fission counting
- Eliminates need for knowledge of neutron flux and fission cross section
- FC efficiency = 98.5±1.5%

TUNL-LANL-LLNL FPY Measurements

TANDEM accelerator

Dual fission chamber

n-detector

neutron ToF

break-up

Counts

Channel Number

fission count

Counts per Channel

Channel Number

gamma count

Counts

Decay Time (s)

Eγ (keV)

Lawrence Livermore National Laboratory
LLNL-PRES-738607

NNSA
Short Lived FPY Measurements

- Expose to neutron beam for 1 hr, begin counting immediately after (<5 min) and count continuously for 3-4 days

- Reduce activity from long lived FPs, halving background
FP Spectra from Fission at $E_n = 9$ MeV

Decay Time: 0 min

Energy (keV)

Counts
FPY Mass Distribution: Long + Short Irradiation

- Self-consistent, systematic approach to measuring FPYs
- Long-lived (days or weeks)
- Short-lived (minutes or hours)
- Constrain the mass distribution
Preliminary Results from $E_n = 9$ MeV

Current data only includes “simple” cases (i.e. no long lived parent nuclei)
More to come with further analysis!
Isomeric Ratios of Fission Products

- Ratio of isomeric to ground state FPY given by angular momentum of fission fragment
- Candidate nuclei in short lived data — ^{133}Te, ^{134}I, ^{135}Xe
- Future measurements at more energies will yield energy evolution of J_{fragment}
Bohr Hypothesis Test - Photofission of 240Pu

- 239Pu(n,f) and 240Pu(γ,f)
 - Same compound nucleus: 240*Pu
 - Match excitation energies

- 240Pu(γ,f) with HIGS γ-ray beams
 - Monoenergetic (\sim3% FWHM)
 - Intense (\sim108 γ/s on target)

- Current progress
 - Fission chamber being fabricated
 - Two electroplated \sim30 μg/cm2 240Pu targets being fabricated
 - 200 mg 240Pu activation target ready
 - HIGS beam available FY18
Concluding Remarks

- FPYs are a sensitive probe of the fission process
- Focus on short-lived FPs to extend mass distribution, fragment momentum
- Planned $^{240}\text{Pu}(\gamma,f)$ measurements will test Bohr hypothesis
- Thanks to collaborators!
 - A.P. Tonchev1, W. Tornow2,3, F. Krishichayan2,3, S. Finch2,3, M. Gooden4
 and J. Wilhelmy4, R. Henderson1, N. Schunk1, R. Vogt1
 - 1LLNL, 2Duke University, 3TUNL, 4LANL