Modernizing the Fission Basis: Short Lived Fission Product Yield Measurements in ^{235, 238}U & ²³⁹Pu

FIESTA2017

Jack Silano

LLNL-PRES-738667 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Fission Product Yields (FPYs)

- Shape and energy evolution of FPY mass distribution is a sensitive probe of the fission process
- Need for high-precision FPY data
 - Stockpile Science
 - Nuclear Energy
 - Nuclear Forensics
 - Antineutrino Anomaly
 - Benchmark for Microscopic Fission Models

Data from T.R. England and B.F. Rider, LA-UR-94-3106 (1994)

Fission Product Yields Landscape

- Neutron-rich fission products β-decay to stability
- Identify with E_{γ} and $t_{1/2}$
- Determine cumulative & independent yields

FPY Energy Dependence

Dual Fission Chamber

- Precise fission counting
- Eliminates need for knowledge of neutron flux and fission cross section
- FC efficiency = 98.5±1.5%

C. Bhatia et al. Nucl. Instr. Meth. A 757, 7, (2014)

 $FPY \propto \frac{1}{\sigma(n, f)\phi(E_n)}$

TUNL-LANL-LLNL FPY Measurements

Short Lived FPY Measurements

- Expose to neutron beam for 1 hr, begin counting immediately after (<5 min) and count continuously for 3-4 days
- Reduce activity from long lived FPs, halving background

FP Spectra from Fission at E_n = 9 MeV

Lawrence Livermore National Laboratory LLNL-PRES-738667

FPY Mass Distribution: Long + Short Irradiation

- Self-consistent, systematic approach to measuring FPYs
- Long-lived (days or weeks)
- Short-lived (minutes or hours)
- Constrain the mass distribution

Preliminary Results from E_n = 9 MeV

Current data only includes "simple" cases (i.e. no long lived parent nuclei) More to come with further analysis!

Isomeric Ratios of Fission Products

- Ratio of isomeric to ground state FPY given by angular momentum of fission fragment
- Candidate nuclei in short lived data
 133To 134L 135Vo
 - ¹³³Te, ¹³⁴I, ¹³⁵Xe
- Future measurements at more energies will yield energy evolution of J_{fragment}

Bohr Hypothesis Test - Photofission of ²⁴⁰Pu

- 239 Pu(n,f) and 240 Pu(γ ,f)
 - Same compound nucleus:^{240*}Pu
 - Match excitation energies
- ²⁴⁰Pu(γ ,f) with HIGS γ -ray beams
 - Monoenergetic (~3% FWHM)
 - Intense (~10⁸ γ /s on target)
- Current progress
 - Fission chamber being fabricated
 - Two electroplated ~30 µg/cm^{2 240}Pu targets being fabricated
 - 200 mg ²⁴⁰Pu activation target ready
 - HIGS beam available FY18

Concluding Remarks

- FPYs are a sensitive probe of the fission process
- Focus on short-lived FPs to extend mass distribution, fragment momentum
- Planned ²⁴⁰Pu(γ ,f) measurements will test Bohr hypothesis
- Thanks to collaborators!
 - A.P. Tonchev¹, W. Tornow^{2,3}, F. Krishichayan^{2,3}, S. Finch^{2,3}, M. Gooden⁴ and J. Wilhelmy⁴, R. Henderson¹, N. Schunk¹, R. Vogt¹
 - ¹LLNL, ²Duke University, ³TUNL, ⁴LANL

