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Introduction

o Historical Remarks
o Some Definitions
o The Big Picture
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Experimental Discovery of Nuclear Fission

« 1939: experimental discovery of

neutron-induced fission
that Hahn and Strassmann were forced to conclude
that isotopes of barium (Z = 56) are formed as a
consequence of the bombardment of uranium (Z = 92)
with neutrons. | weitner, Nature 3615, 239 (1939). _

On the basis, however, of present ideas about the
behaviour of heavy nuclei®, an entirely different and
essentially classical picture of these new disintegration
processes suggests itself. On account of their close
packing and strong energy exchange, the particles
in a heavy nucleus would be expected to move in a
collective way which has some resemblance to the
movement of a liquid drop. If the movement is made
sufficiently viclent by adding energy, such a drop
may divide itself into two smaller drops.

e 1940: experimental discovery of
spontaneous fission by K.A.
fahn's Worktable Petrzhak and G.N. Flerov
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Fission: A Large Amplitude Collective Motion

e Induced fission as a two-step m m (//\\

process: formation of a compound
nucleus followed by its decay

e Semi-classical process that can be @@
described by a set of collective

variables (=deformations)
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« Separate collective motion of the d.,g#:%‘*o?“"%‘:zedom

nucleus as a whole and intrinsic
excitations of its constituents N

E.
« Adiabatic approximation: the cou- f«ﬁ @% s
pling between intrinsic and collec- | =N
tive can be neglected
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Theorist’s TODO List

Theory of Nuclear Force

e Choose collective variables

« Compute energy as a function of

collective variables BFT Solver
Technology
« Compute dynamical evolution CSTATICDESCRIPTION  ~~ [~~~ 77 e
| OF FISSION . :
through that space . sk By :
1 1
— Quantum tunneling for spontaneous ' BRIz s |
! Inertia configurations
fission | g M oo
| . T BEEER
— Quantum collective flow for fission | =~ |spontaneous ||~ | AbiagaTic
. . . | FlSS|ON|| DYNAMICS | Fragment kinetic
fragment distributions — Ing == ™©
[ T CC [
« Alternatives e L,
— | energy (TXE)
— Statistical model :
. . . . . 1
— Real-time dynamics for single fission
Fission fragment
eve nts charge and mass

distribution
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Nuclear static properties in the
collective space

« Macroscopic-Microscopic Models (4)
o Nuclear Density Functional Theory (4)
o The Concept of Scission (3)
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Macroscopic-microscopic Models (1/4)

Introduction
P = = e oormanon. 4 ®1aKe iNto account nucleon
y = = Tt degrees of freedom
g = = | 2405, | - Shell correction coming
3 vore = ] from the distribution of
? oo nucteus B | \ror single-particle levels
~ o soiten | —~ Pairing correction to mock
N T up the effect of residual
5 - _ interactions
s I« Extensions to finite
- oot 1 angular momentum or
ASYMMETRIC DEFORMATION, d., temperature are aISO
DEFORMATION —» available

In the macroscopic-microscopic approach, the basic degrees of freedom are the single-particle

states and the nuclear deformations, and the equation of motion is the Schrodinger equation
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Macroscopic-microscopic Models (2/4)
Components of the Total Energy

Total energy is written

E(q) = Enac(q@) + 0 Rgnenn(q) + 0 Rpair(q)

Macroscopic liquid drop energy

Emac(Q) — Evol + Esurf(Q) + Easym(q) =+ ECoul. (Q)

Shell correction

SRenen(q) = ) €n — <Z €n>

n n

Pairing correction N

5Rpail‘(q) — Epair — Epair
Shell and pairing corrections require a set of single-particle energies
e : need to solve the Schrédinger equation

L
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Macroscopic-microscopic Models (3/4)
Single-Particle Degrees of Freedom

(One-body) Schrodinger equation

M2 4 V(1) | on(r) = enion(r)

 9m
. . . V(r) (MeV)
« Mean-field potential can be Nilsson, A r (fm)

Woods-Saxon, Folded-Yukawa, etc.

« Solve BCS equation (for example) to
compute occupation of s.p. states
and extract pairing energy

Bigigh

e Collective variables are deformations
that define the shape of the potential

L
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Macroscopic-microscopic Models (4/4)

Examples
-En||||||||\||||\||||\|||\||||;||||\|||||||||||||||||||||||||||||\||||;||||\||HE- E(B21 Yz;ﬁr’ a:nz’ 3T4, B:: ﬁ:)(MEV)
%“ 10 3 Experimental FRDM (2012) = — ]
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= G = 0.5595 MeV 3 -
_10 S b b b b b b b1 8 ]
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B2 COS v,

« The macroscopic-microscopic model can be applied to ground-

state properties, e.g., masses

« Given a set of collective variables, we can calculate the potential

energy surface, that is, the function E(q)
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Nuclear Density Functional Theory (1/4)

Introduction

Describe fission as emerging from nuclear forces and quantum
many-body effects

(Many-body) Schrodinger equation for the nucleus

Exact many-body Exact many-body

Hamiltonian, e.g., chiral — H ‘ \Ifn> — En ’ \I/n> < wavefunctions with -
effective field theory all correlations built-in

Why is it impossible for heavy nuclei (at least in this century)?

—  We do not know the exact nuclear Hamiltonian, only have (good)
approximations of it that involve 2-, 3- and now 4-body forces

— The exact wavefunction depends on 3A coordinates, 3A momenta, and A
spins: computational requirements for heavy nuclei are out of this world
(current limit: A £ 16 and heavier closed-shells nuclei)

How to simplify the problem while keeping as much quantum
mechanics and information about nuclear forces?

L
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Nuclear Density Functional Theory (2/4)

From reference states to densities

e Replace the (unobtainable) exact W) = @)k ol t aalt)s toulblitorilhi +
wave function by a simpler form,the = = — = = -
reference state 123 &8 !B 8 3

Independent particle model: Slat e | 95 ®o oo e oo,

— Independent particle model: Slater S S 99 99!

pensen parte s . 8888
determinant, an (antisymmetrized) o oo o0 oo oo

] i ] I &0 oo oo oo oo

product of single-particle wave functions oo
o o o oo | o
— DFT: HFB vacuum, a very particular g3 o8 32 3 o2

superposition of Slater determinants e ot o e v oecupation
' . ' oo oo o—o oo oo probability )

e Replace exact Hamiltonian with ° 1
effective one such that energy )
computed with reference state is OK  (®|Heg |P) — E|p, K]

 Energy becomes a functional of
density of particles and pairing tensor
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Nuclear Density Functional Theory (3/4)

Static nuclear properties with reference states

 Form of the energy functional chosen by physicists, often guided by
characteristics of nuclear forces (central force, spin-orbit, tensor,
etc.): Skyrme, Gogny, etc.

e Variational principle: determine the actual densities of the nucleus
by requiring the energy is minimal with respect to their variations

— Resulting equation is called HFB equation (Hartree-Fock-Bogoliubov)

— Solving the equation gives densities and characteristics of the reference state

* Any observable can be computed knowing the density

(r?) = /dgr p(r)r?
 One can compute potential energy surfaces by solving the HFB
equation with constraints on the value of the collective variables

L
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Nuclear Density Functional Theory (4/4)

Examples

100 - |Mth. — Mexp.l |

lg (trrRom/tour)
120 T

I
100 |- B-decay half-lives

AN o N

I

Octupole deformation B,

=

Qudrupole deformation B,

e DFT can now be applied to g.s.
properties (masses), decays
(beta-decay)

e Potential energy surfaces can be
computed easily
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Concept of Scission (1/3)

Introduction

e The scission line distinguishes

regions of the PES where the

- 56
nucleus is whole and where it ~ *} |48
. - m i _
has split in two fragments £ 30t N
o 132
— Macro-micro: can be built-in the 20 24
shape parametrization - 16
— DFT: often identified as a f 3 | | | . X
discontinuity ORS00 H200FE FI3000 00500600 i
Qy (b)
1_| T ] 1_| T 1 ' ]
g- O__ \_\-"; I | g or ! ‘E |
10 I“| ------- L] : H\ ¥
3 2 2 3 -1 | | L el ]
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Concept of Scission (2/3)

Continuous scission

« Sharp, geometric scission unreal- °

istic
— Coulomb forces take over nuclear
forces before neck vanish

IN

— DFT: scission often viewed as
discontinuity but only because

HFB Energy (MeV)
0

)
N T T

finite number of collective
_ —e— UNEDFO 10t ny
variables 1 |~ UNEDF1 - - |
M I |||||||||||||||X[frn|]||||| L
« More realistic descriptions imply 40 30 2.0 1.0 0.0
L. . . Number of Particles in the Neck q,
scission (radius, density, etc.)

A z— 2z 2
becomes a parameter of thecal-  (Qy) = /d3r p(r)e (=)
culation
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Concept of Scission (3/3)

Scission and quantum entanglement

e Simple, user-defined criteria for scission often ignore
— Quantum nature of fission fragments and neck region: antisymmetry
— Finite-range of nuclear and Coulomb forces
o Adiabatic theory not adapted to describe dynamical, non-equilib-
rium process such as scission
1025 """" T ™ o
1l —— Total I
~ 107} — Left s
é 100; : 'T"(I)gtzlt[rot.f % -200
210" F - Left (rot.) 2
@ 2_ - Right(rot._ﬁ § .
g 10 . g 400 VA=
& 107F E g " |—— UNEDFO
S 10t T P A o Sar |
2 10 2 e\ 2 Uneors con|
10'?2_0' ~ '-10 - 'DI - 1'@' — ;_;'0' 3',0 ' ke X B WS W 05 0.0

Elongation z (fm)

Number of particles in the neck qy
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Fission Dynamics

« Scission Point Model (1)

o Classical Dynamics (2)

o Quantum Dynamics — TDGCM (3)
o Quantum Dynamics — TDDFT (3)
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The Scission Point Model

Statistical Approximation to Fission Dynamic

« Static picture exclusively based on
the structure of the potential en-
ergy surface at scission (including
the fragment characteristics)

e Probability of fission is simply re-
lated to (Wilkins)

oc/dqlquQe_V(Q1’Q25o‘)/T

or the level densities of the two
fragments (SPY)

X / dq, / dq,p1(qy; ) p2(qy; @)

L s e e e e LA E s s
I 235 —e— experiment
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Classical Dynamics (1/2)

Langevin equations

 How to extract fission product yields from the knowledge of the po-

tential energy surface?
— Analogy with classical theory of diffusion
— Collective variable = generalized coordinate

- Define related momentum Fluctuation-dissipation theorem

e Langevin equations Z ©,.0,; =TT
. 1 7 — Ly
oo = Z BapPs;  Friction tensor k

/ / Random force

Pa = — g PaﬁBBq/pv = E @aﬁgﬁ
{08 6y " ov
-3 PP~y — 5 —
2 04, 04
By
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Classical Dynamics (2/2)

Practical examples

T T LI I B B
25— cCalc. (6.84 MeV)

240p, + —— Calc. (6.54 MeV)
- - Exp. *Pu(n,f) -o- Exp. **U(n,f)

<
N
e e e B e e LI e - —
T 25:‘ — Calc. (6.54 MeV) 4 F —— Calc. (11.0 MeV) 234y
g b -e- Bpygfund —o- Exp. Z*U(yf)
> 20F

15|

10 F

5F

oL

mass

Fragment Charge Number Z;

« Start beyond the saddle point (or close enough)

. 10E
I
1o}
9 1
1>

0.1k

410

charge yield (%)

120

140
fragment mass

160 50

60
fragment charge

« Build trajectories through the collective space by generating at
each step the needed random variable

« Enough trajectories (in the thousands) allow reconstructing FPY
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Quantum Dynamics - TDGCM (1/3)

Computing the flow of probability in the collective space

e Ansatz for the time-dependent many-body wave function

W(2))

_ / da f(q, 1)|®(q)

« Minimization of the time-dependent quantum mechanical action +
ansatz + Gaussian overlap approximation + some patience

.0

« Interpretation

—B
8qk kl 3

a(ﬂ

+V(q)

g9(q,1)

— g(q, t) is probability amplitude to be at point g at time t

— Related probability current

— Flux of probability current through scission line gives yields

L
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Quantum Dynamics - TDGCM (2/3)
Example: TDGCM Evolution

Time: 0.8 e-21 s

E
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Quantum Dynamics — TDGCM (3/3)

Examples: Fission Product Yield Calculations

8

LI I i i e B i e B e e e e e R REE ELELEL W UL BN L = I 2 L B L2 B =
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Quantum Dynamics — TDDFT (1/3)

Brief Introduction

Main limitation of Langevin and TDGCM: adiabaticity is built-in
-~ Need to precompute potential energy surfaces (costly)
— Invoke arbitrary criteria for scission

— Does not (easily) include dissipation = exchange between intrinsic (=single-
particle) and collective degrees of freedom

Solution: Generalize DFT to time-dependent processes

Start from time-dependent many-body Schroédinger equation

i YO) g )

ot
e |nsert approximation that many-body state is g.p. vacuum at all
time _OR
ih— = |H,R]
ot
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Quantum Dynamics — TDDFT (2/3)

Advantages and Limitations

e Advantages

— TDDFT does not require adiabaticity, total energy is conserved: diabatic
excitation of s.p./q.p. states

— Dynamic shape evolution: normal and pairing vibrations, giant resonances
— Produces ‘naturally’ excited fission fragments
e Limitations
— Computational cost is enormous (especially for TDHFB)
— Nucleus cannot tunnel through (semi-classical): not adapted to SF

— Need HFB solver in coordinate space

e Computing FPY from TDDFT by sampling trajectories is in principle
possible but would require computational resources at or beyond
exascale (100x what we have now)

. . e
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Quantum Dynamics — TDDFT (3/3)

Examples

20 Py fission with SkM * mod

density (fm *) pairing gap (MeV)
0.20 2.500
0.15 1.875
0.10 1.250
0.05 0.625
0.00 0.000
pairing phase
t = 506.8141 (fm/c)
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Conclusions

« Navigating the zoo of methods
o Perspectives
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A Bird’s View

Elements of comparisons of different approaches

Quantum Description Adiabaticity Observable

Scission Half
point model
Macro-micro

+ Half

Langevin

DFT
+ Full
TDGCM
TDDFT Full

Static

Static
+

dynamic

Static
+

dynamic

Dynamic

Yes

Yes

Yes

No

Fission
yields

Fission
events

Fission
yields

Fission
events

Computational
cost

Low

Low

Moderate-high

Very high
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A Bird’s View

Elements of comparisons of different approaches

Theory of Nuclear Force
Density

Functional
Theory

Macroscopic
Microscopic
Method

DFT Solver
Technology
____________________ - o
Potential ! STATIC DESCRIPTION I
Energy : OF FISSION . I
surfaces Time-dependent I POtegS;;Egsrgy 1
Density I I
Functional I Collective p— I
Theory ! Inertia configurations 1] |
Scission : 1, RN
configurations e T 1 i gl g g i
=== === == [ il pllel o, e o
l SPONTANEOUS T ADIABATIC |
1 FISSION, DYNAMICS | Fragment kinetic
1 | energy (TKE)
Minimization of 11
[l the action 1
Scission : Collective I -
Langevin - 1) ST I PR N 1
Point Dyngmics Schrodinger : S

Model

Equation

Fission Product Yields

I
I
I
[ \ :
I
I
I

e e e e e e e e .

Fission fragment
charge and mass
distribution
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