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Introducton
● Historical Remarks
● Some Defniions
● The Big Picture
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Experimental Discovery of Nuclear Fission

• 1939: experimental discovery of 
neutron-induced fssion

• 1940: experimental discovery of 
spontaneous fssion by K.A. 
Petrzhak and G.N. Flerov

L. Meitner, Nature 3615, 239 (1939).
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Fission: A Large Amplitude Collectve Moton

• Induced fssion as a two-step 
process: formaion of a compound 
nucleus  followed by its decay

• Semi-classical process that can be 
described by a set of collecive 
variables (=deformaions) 

• Separate collecive moion of the 
nucleus as a whole and intrinsic 
excitaions of its consituents

• Adiabaic approximaion: the cou-
pling between intrinsic and collec-
ive can be neglected
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Theorist’s TODO List

• Choose collecive variables

• Compute energy as a funcion of 
collecive variables

• Compute dynamical evoluion 
through that space

– Quantum tunneling for spontaneous 
fssion

– Quantum collecive fow for fssion 
fragment distribuions

• Alternaives
– Staisical model

– Real-ime dynamics for single fssion 
events
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Nuclear statc propertes in the 
collectve space

● Macroscopic-Microscopic Models (4)
● Nuclear Density Funcional Theory (4)
● The Concept of Scission (3)
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Macroscopic-microscopic Models (1/4)
Introducton

• Take into account nucleon 
degrees of freedom

– Shell correcion coming 
from the distribuion of 
single-paricle levels

– Pairing correcion to mock 
up the efect of residual 
interacions

• Extensions to fnite 
angular momentum or 
temperature are also 
available

In the macroscopic-microscopic approach, the basic degrees of freedom are the single-paricle 
states and the nuclear deformaions, and the equaion of moion is the Schrödinger equaion
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Macroscopic-microscopic Models (2/4)
Components of the Total Energy

• Total energy is writen

• Macroscopic liquid drop energy

• Shell correcion

• Pairing correcion

• Shell and pairing correcions require a set of single-paricle energies 
e

n
: need to solve the Schrödinger equaion
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Macroscopic-microscopic Models (3/4)
Single-Partcle Degrees of Freedom

• (One-body) Schrödinger equaion

• Mean-feld potenial can be Nilsson, 
Woods-Saxon, Folded-Yukawa, etc.

• Solve BCS equaion (for example) to 
compute occupaion of s.p. states 
and extract pairing energy

• Collecive variables are deformaions 
that defne the shape of the potenial
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Macroscopic-microscopic Models (4/4)
Examples

• The macroscopic-microscopic model can be applied to ground-
state properies, e.g., masses

• Given a set of collecive variables, we can calculate the potenial 
energy surface, that is, the funcion E(q)
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Nuclear Density Functonal Theory (1/4)
Introducion

● Describe fssion as emerging from nuclear forces and quantum 
many-body efects

● (Many-body) Schrödinger equaion for the nucleus

● Why is it impossible for heavy nuclei (at least in this century)?
– We do not know the exact nuclear Hamiltonian, only have (good) 

approximaions of it that involve 2-, 3- and now 4-body forces

– The exact wavefuncion depends on 3A coordinates, 3A momenta, and A 
spins: computaional requirements for heavy nuclei are out of this world 
(current limit: A ≤ 16 and heavier closed-shells nuclei)

● How to simplify the problem while keeping as much quantum 
mechanics and informaion about nuclear forces?
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Nuclear Density Functonal Theory (2/4)
From reference states to densiies

● Replace the (unobtainable) exact 
wave funcion by a simpler form, the 
reference state
– Independent paricle model: Slater 

determinant, an (anisymmetrized) 
product of single-paricle wave funcions

– DFT: HFB vacuum, a very paricular 
superposiion of Slater determinants 

● Replace exact Hamiltonian with 
efecive one such that energy 
computed with reference state is OK

● Energy becomes a funcional of 
density of paricles and pairing tensor
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Nuclear Density Functonal Theory (3/4)
Staic nuclear properies with reference states

● Form of the energy funcional chosen by physicists, ofen guided by 
characterisics of nuclear forces (central force, spin-orbit, tensor, 
etc.): Skyrme, Gogny, etc.

● Variaional principle: determine the actual densiies of the nucleus 
by requiring the energy is minimal with respect to their variaions
– Resuling equaion is called HFB equaion (Hartree-Fock-Bogoliubov)

– Solving the equaion gives densiies and characterisics of the reference state

● Any observable can be computed knowing the density

● One can compute potenial energy surfaces by solving the HFB 
equaion with constraints on the value of the collecive variables
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Nuclear Density Functonal Theory (4/4)
Examples

• DFT can now be applied to g.s. 
properies (masses), decays 
(beta-decay)

• Potenial energy surfaces can be 
computed easily
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Concept of Scission (1/3)
Introducion

• The scission line disinguishes 
regions of the PES where the 
nucleus is whole and where it 
has split in two fragments

– Macro-micro: can be built-in the 
shape parametrizaion

– DFT: ofen idenifed as a 
disconinuity
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• Sharp, geometric scission unreal-
isic

– Coulomb forces take over nuclear 
forces before neck vanish

– DFT: scission ofen viewed as 
disconinuity but only because 
fnite number of collecive 
variables

• More realisic descripions imply 
scission (radius, density, etc.) 
becomes a parameter of the cal-
culaion

Concept of Scission (2/3)
Coninuous scission
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• Simple, user-defned criteria for scission ofen ignore
– Quantum nature of fssion fragments and neck region: anisymmetry

– Finite-range of nuclear and Coulomb forces

• Adiabaic theory not adapted to describe dynamical, non-equilib-
rium process such as scission

Concept of Scission (3/3)
Scission and quantum entanglement
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Fission Dynamics
● Scission Point Model (1)
● Classical Dynamics (2)
● Quantum Dynamics – TDGCM (3)
● Quantum Dynamics – TDDFT (3)
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The Scission Point Model
Staisical Approximaion to Fission Dynamic

• Staic picture exclusively based on 
the structure of the potenial en-
ergy surface at scission (including 
the fragment characterisics)

• Probability of fssion is simply re-
lated to (Wilkins)

or the level densiies of the two 
fragments (SPY)
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Classical Dynamics (1/2)
Langevin equaions

● How to extract fssion product yields from the knowledge of the po-
tenial energy surface?
– Analogy with classical theory of difusion

– Collecive variable = generalized coordinate

– Defne related momentum

● Langevin equaions

Fricion tensor
Random force

Fluctuaion-dissipaion theorem
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Classical Dynamics (2/2)
Pracical examples

• Start beyond the saddle point (or close enough)

• Build trajectories through the collecive space by generaing at 
each step the needed random variable

• Enough trajectories (in the thousands) allow reconstrucing FPY
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• Ansatz for the ime-dependent many-body wave funcion

• Minimizaion of the ime-dependent quantum mechanical acion + 
ansatz + Gaussian overlap approximaion + some paience

• Interpretaion
–              is probability amplitude to be at point q at ime t

– Related probability current 

– Flux of probability current through scission line gives yields

Quantum Dynamics - TDGCM (1/3)
Compuing the fow of probability in the collecive space
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Quantum Dynamics - TDGCM (2/3)
Example: TDGCM Evoluion
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Quantum Dynamics – TDGCM (3/3)
Examples: Fission Product Yield Calculaions
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Quantum Dynamics – TDDFT (1/3)
Brief Introducion

● Main limitaion of Langevin and TDGCM: adiabaicity is built-in
– Need to precompute potenial energy surfaces (costly)

– Invoke arbitrary criteria for scission

– Does not (easily) include dissipaion = exchange between intrinsic (=single-
paricle) and collecive degrees of freedom

● Soluion: Generalize DFT to ime-dependent processes

● Start from ime-dependent many-body Schrödinger equaion

● Insert approximaion that many-body state is q.p. vacuum at all 
ime
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Quantum Dynamics – TDDFT (2/3)
Advantages and Limitaions

● Advantages
– TDDFT does not require adiabaicity, total energy is conserved: diabaic 

excitaion of s.p./q.p. states

– Dynamic shape evoluion: normal and pairing vibraions, giant resonances

– Produces ‘naturally’ excited fssion fragments

● Limitaions
– Computaional cost is enormous (especially for TDHFB)

– Nucleus cannot tunnel through (semi-classical): not adapted to SF

– Need HFB solver in coordinate space

● Compuing FPY from TDDFT by sampling trajectories is in principle 
possible but would require computaional resources at or beyond 
exascale (100x what we have now)
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Quantum Dynamics – TDDFT (3/3)
Examples
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Conclusions
● Navigaing the zoo of methods
● Perspecives
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A Bird’s View
Elements of comparisons of diferent approaches

Quantum Description Adiabaticity Observable Computational 
cost

Scission 
point model Half Static Yes Fission 

yields Low

Macro-micro
+

Langevin
Half

Static
+

dynamic
Yes Fission 

events Low

DFT
+

TDGCM

Full Static
+

dynamic
Yes Fission 

yields Moderate-high

TDDFT Full Dynamic No Fission 
events Very high
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A Bird’s View
Elements of comparisons of diferent approaches
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