FIESTA 2017 Fission Experiments and Theoretical Advances

Santa Fe, 18-22 September, 2017

Fission dynamics with microscopic level densities

Jørgen Randrup¹, Daniel Ward², Gillis Carlsson², Thomas Døssing³, Peter Möller⁴, Sven Åberg²

¹ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

- ² Mathematical Physics, Lund University, S-221 00 Lund, Sweden
- ³Niels Bohr Institute, Copenhagen University, DK-2100 Copenhagen Ø, Denmark
- ⁴ Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Editors' Suggestion: Phys. Rev. C **95**, 024618 (2017)

Nuclear fission is a result of shape dynamics

Otto R. Frisch (1904-1979)

L. Meitner & J.A. O.R. Frisch, Nature **143** (1939) 239: Disintegration of Uranium by Neutrons: A New Type of Nuclear Reaction

Lise Meitner (1878-1968)

John A. Wheeler (1911-2008)

N. Bohr & J.A. Wheeler, Phys Rev **56** (1939) 426: *The Mechanism of Nuclear Fission*

Niels Bohr (1885-1962)

Nuclear shape dynamics -> random walk

The time evolution of the nuclear shape parameters, q(t):

Paul Langevin (1872 - 1946)

 $d\mathbf{p}/dt = \mathbf{F}^{cons} + \mathbf{F}^{diss}$ Langevin equation: M(q) $U(\boldsymbol{q})$ $\gamma(\boldsymbol{q})$

Marian Smoluchowski (1872 - 1917)

J. Randrup and P. Möller, PRL 106, 132503 (2011): The shape motion is *highly dissipative*: Brownian motion Smoluchowski equation: **0** = **F**^{cons} + **F**^{diss} $U(\boldsymbol{q})$ $\gamma(q)$ If $P(A_f)$ is \approx insensitive to $\gamma(q)$: Random walk on the energy landscape U(q)

Metropolis, Rosenbluth², Teller², J. Chem. Phys. **21** (1953) 1087

(1915-1999)

Metropolis walk ...

 ΔU : Change in potential *T*: Local temperature

... on the potential-energy surface:

Start at ground-state (or isomeric) minimum 2^{26} U P. Möller, Nucl. Phys. A192 (1972) 529 Walk until the neck nas become thin ...

Elongation

Nuclear shape evolution as a random walk on the 5D potential energy landscape J. Randrup and P. Möller, Phys. Rev. Lett. **106**, 132503 (2011)

Energy dependence of the fission shape evolution

Use an effective energy landscape obtained by suppressing the microscopic terms

J. Randrup and P. Möller, Phys. Rev. C 88, 064606 (2013): $U(q) = U_{macro}(q) + U_{micro}(q) \times S(E^*(q))$

Use shape-dependent microscopic level densities to guide the random walk: $\rho_{\text{micro}}(q)$

D.E. Ward, B.G. Carlsson, T. Døssing, P. Möller, J. Randrup, S. Åberg, Phys. Rev. C **95**, 024618 (2017) [Editors' Suggestion]

But generally $\rho_{E}(\chi) \neq \rho(E(\chi))$ due to structure effects: So use realistic level densities!

Collaboration for the purpose of obtaining level densities for all relevant fission shapes: Gillis Carlsson, Thomas Døssing, Peter Möller, Jørgen Randrup, <u>David Ward</u>, Sven Åberg

Jørgen Randrup

Combinatorial method for the nuclear level density

H. Uhrenholt, S. Åberg, A. Dobrowolski, Th. Døssing, T. Ichikawa, P. Möller: NPA 913 (2013) 127

$$\rho(E, I, \pi) = \frac{1}{\Delta E} \int_{E}^{E + \Delta E} \sum_{i} \delta(E' - E_{i}(I, \pi)) dE' \qquad \Longrightarrow \qquad \rho(E) = \sum_{I, \pi} \rho(E, I, \pi)$$
$$E = \mathcal{E}_{p} + \mathcal{E}_{n} + E_{rot}$$

Consider all multiple p-h excitations Intrinsic for protons and neutrons separately states: $|i\rangle = \prod a^+_{\nu_{\alpha}} a_{\nu'_{\alpha}} |0\rangle,$ ground state 1p-1h state 2p-2h state Calculate BCS pairing for each one Pairing Rotational band built on each intrinsic state: Rotational OBS: Higher I enhancement $E_{\rm rot}(I,K) = [I(I+1)-K^2]/2\mathcal{I}_{\rm perp}(\chi,\Delta_{\rm p},\Delta_{\rm p})$ \Rightarrow Lower E_{intr} Vibrational *Note:* The single-particle levels are Expected to be unimportant => ignored enhancement the same as those used to get the

shell and pairing energies in U(q)!

Combinatorial model for the nuclear level density

H. Uhrenholt, S. Åberg, A. Dobrowolski, Th. Døssing, T. Ichikawa, P. Möller: NPA 913 (2013) 127

$$\rho(E,I,\pi) = \frac{1}{\Delta E} \int_{E}^{E+\Delta E} \sum_{i} \delta(E' - E_i(I,\pi)) dE' \qquad \Longrightarrow \qquad \rho(E) = \sum_{I\pi} \rho(E,I,\pi)$$

Jørgen Randrup

Project:

Use the combinatorial method to obtain the microscopic level density for *all* (>5M) 3QS shapes for which the potential has been tabulated: $\rho_{ZA}(E,I,\text{shape})$

for each individual fissioning nucleus ${}^{A}Z$ (U_{ZA} (shape) exists for >5k ${}^{A}Z$)

Asymmetric shapes Replace $\{\varepsilon_n\}$ by 3QS Get all s.p. levels (PM)

Use those as the basis for the random walk:

P _{down} :	$P(U' \leq U) = 1$	>	$P(\rho' \ge \rho) = 1$	Trivial code
P _{up} :	$P(U' \ge U) = \exp(-\Delta U/T)$	>	$P(\rho' \le \rho) = \rho'/\rho$	modification

Then the gradual disappearance of pairing and shell effects with excitation is *automatically* included in the shape evolution

Fully consistent: same s.p. levels used for U and ρ (no parameters)

Mass yields using microscopic level densities

Energy dependence of fission yields: *Non-monotonic* behavior of the symmetric yield

Fission of ²³⁶U:

Potential-energy surface

Terminal shapes

T. Ichikawa, A. Iwamoto, P. Möller, A.J. Sierk, Physical Review C **86**, 024610 (2012)

Energy dependence of fission yields: *Non-monotonic* behavior of the symmetric yield

FIESTA 2017 Fission Experiments and Theoretical Advances Santa Fe, 18-22 September, 2017

Fission dynamics with microscopic level densities

The nuclear shape evolution is akin to Brownian motion and can be approximately described as a random walk on the multi-dimensional deformation-energy surface (no adjustable parameters, computationally fast)

This conceptually simple treatment makes it possible to calculate fission fragment mass and charge yields for any nucleus for which suitable potential-energy surfaces exist (5D surfaces exist for over 5,000 nuclei)

A general & consistent description was obtained by using the *microscopic* level densities calculated for *each shape* by means of a recently developed combinatorial method; the gradual disappearance of shell and pairing effects is then *automatically* ensured *without any new parameters*

 $U_E(\text{shape}) = U_{\text{macro}} + U_{\text{micro}}$

 $ho_{
m micro}$ (shape)

 $rac{
u(\chi o \chi')}{
u(\chi' o \chi)} = rac{
ho(\chi')}{
ho(\chi)}$, $rac{
u(\chi')}{
ho}$

A marriage between nuclear <u>structure & dynamics!</u>

Editors' Suggestion: Phys. Rev. C **95**, 024618 (2017)

Jørgen Randrup