

The Surrogate Reaction Method Applied to ²⁴⁰Pu

R. Pérez, B. Jurado, D. Denis-Petit, L. Mathieu, I. Tsekhanovich , M. Aïche, S. Czajkowski (CENBG, Bordeaux, France)
V. Méot, O. Roig, P. Marini (CEA-DAM, France)
L. Audouin, D. Ramos, S. Delpeche, C. Cannes, J. Mottier (IPN-Orsay, France)
A. Goergen, S. Siem, F. Zeiser (Univ. Oslo, Norway)
G. Kessedjian (LPSC, France)
K. Nishio (JAEA, Japan)

- There is a need of neutron induced cross sections of short-lived nuclei (astrophysics and nuclear reactor physics).
- These are difficult to measure due to the high radioactivity of the nuclei to be studied.

 Alternative methods to the direct measurement have to be investigated.

The Surrogate Reaction Method

Cramer and Britt (Los Alamos 1970)

Previous Results: $^{238}U(^{3}He,^{4}He)^{237}U \leftrightarrow n+^{236}U$

Why such differences? In general fission is less sensitive to the entrance channel.

Why 240 Pu?

- These behaviour differences between gamma decay and fission probabilities are not yet understood.
- Well known equivalent neutron induced reaction n+²³⁹Pu.
- It is a fissile even-even nucleus, thus a lower level density than in odd nuclei near to the fission barrier is expected. Previously just odd nuclei were studied by the group.

The experiment: 240 Pu(4 He, 4 He') \leftrightarrow n+ 239 Pu

The experiment: 240 Pu(4 He, 4 He') \leftrightarrow n+ 239 Pu

$$P_{\chi}^{surro}(E^*) = \frac{N_{c_{\chi}}(E^*)}{N_s(E^*) \cdot \varepsilon_{\chi}(E^*)}$$

- Simultaneous measurement of fission and gamma decay probabilities.
- Challenging to substract gammas coming from fission fragments.

Preliminary Results: Validation of the method

240Pu(4He,4He')

The fact that the total decay probability below Sn is equal to 1 validates the method!

Preliminary Results: Angle Comparison

No dependence on the detection angle of the scattered particles is observed.

Preliminary Results: Comparison with Previous Experiments

Fission Probabilities

Previous experiments suffered from significant background due to target contaminants.

Conclusions and Perspectives

- First simultaneous measurement of P_f and P_g for ²⁴⁰Pu(4He,4He').
- No angular dependence observed.
- Fission probabilities are in good agreement with other experiments under Sn but systematically higher than them over this energy.
- Perspectives:
 - Comparison with neutron induced data.
 - Use the statistical model for the interpretation of the results.
 - Study of the ²⁴⁰Pu(³He,³He') and ²⁴⁰Pu(³He,⁴He) reactions measured in the same experiment.

Singles and Coincidences

Efficiency Obtention

Fission

- Fission fragment angular distribution, simulation.
- Use of an isotropic source of 252Cf to obtain the efficiency.

Gamma

- EXEM method (NIMPR A 826 (2016) 60-64).
- Neutrons separeted using a PSD system.
- Gamma energy thresholds.

EXEM Method

Fig. 2. Ratio between the number of gamma-ejectile coincidences and the total number of detected ejectiles as a function of the excitation energy of 239 U^{*} for two gamma-ray energy thresholds of 400 keV and 1.5 MeV. The ejectiles were detected at 126°. The vertical dotted line indicates the neutron separation energy of 239 U and the red solid lines are linear fits to the data in the E^* interval [2 MeV; S_n]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

