

Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

Prompt gamma rays from the spontaneous fission of ²⁵²Cf and their angular distributions

Andreas Oberstedt

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) / Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 077125 Bucharest-Magurele, Romania

- Introduction
- Experimental setup
- Data treatment
- Preliminary results
- Discussion
- Summary & outlook

 For many years: precise measurement of prompt fission γ-ray spectra (PFGS)

- For many years: precise measurement of prompt fission γ-ray spectra (PFGS)
- Determination of characteristics:
 - < M_{γ}>, < ϵ_{γ} >, and <E_{γ ,tot}>

- For many years: precise measurement of prompt fission γ-ray spectra (PFGS)
- Determination of characteristics:
 - < M_{γ}>, < ϵ_{γ} >, and <E_{γ ,tot}>
- Studies of the dependence of A, Z, and E_x

Introduction

PFGS characteristics as function of A, Z and E_x

Cf 239 ~ 39 s	Cf 240 1,06 m	Cf 241 3,78 m	Cf 242 3,68 m	Cf 243 10,7 m	Cf 244 19,4 m	Cf 245 43,6 m	Cf 246 35,7 h	Cf 247 3,11 h	Cf 248 333,5 d	Cf 249 350,6 a	Cf 250 13,08 a	Cf 251 898 a	Cf 252 2,645 a
α 7,63	α 7,59 sf	α 7,342	α 7,392; 7,358 € ?	α 7,06; 7,17 g	α 7,209; 7,174 g	α 7,137 g	α 6,750, 6,708 sf γ (42; 96) e ⁻ ; g	α 6,296; 6,238 γ (294; 448; 418); e	α 6,256, 6,217 sf γ (43) e ⁻ ; g	α 5,812, 5,758 sf γ 388; 333; g σ 500; σι 1700	α 6,030; 3,969 sf γ (43); e ⁻ σ 2000; σt < 350	α 5,679, 5,649, 6,012 γ 177; 227 σ 2900; σ ₁ 4500	sf γ (43); e σ 20; σ ₁ 32
Bk 238 144 s		Bk 240 5 m		Bk 242	Bk 243 4,5 h	Bk 244 4,35 h	Bk 245 4,90 d	Bk 246 1,80 d	Bk 247 1380 a	Bk 248 23,7 h > 9 a	Bk 249 320 d	Bk 250 3,217 h	Bk 251 55,6 m
βst		e βsf		a	? α 6.575, 6.543 γ 755, 946 9	е и 6,662, 6,620 у 892; 216; 922 0	ο 5,888, 6,150 γ 253, 381 e g	γ 799; 1081; 834; 1124 e	5,688 γ 84; 265 g	β ⁻ 0.9 • γ 551 θ ⁻ • • •	5,391; sf γ (327; 308) σ 700; σt ~ 0,1	γ 989; 1032; 1029 σι 1000	$\begin{array}{l} \beta^{+} \sim 0,9;\; 1,1\\ \gamma\; 178;\; 130;\\ 153 \end{array}$
	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d	Cm 241 32,8 d	Cm 242 162,94 d	Cm 243 29,1 a	Cm 244 18,10 a	Cm 245 8500 a	Cm 246 4730 a	Cm 247 1,56 · 10 ⁷ a	Cm 248 3,40 · 10 ⁵ a	Cm 249 64,15 m	Cm 250 ~ 9700 a
	ε α 6.52	е у 188 9	α 6,291; 6,248 st g	a 5,939 y 472, 431; 132 e g	sf; 9 γ (44); e^{-} $\sigma - 20$ $\sigma_{f} - 5$	ε; sf; g γ 278; 228; 210; e σ 130; σ ₁ 620	α 5,805; 5,762 st; g γ (43,); e ⁻ σ 15; σ _f 1,1	α 5,361; 5,304 sf; g γ 175; 133 σ 350; σ ₁ 2100	α 5,386; 5,343 sf; g γ (45); e σ 1,2; σ _f 0,16	α 4,870; 5,267 γ 402; 278 g σ 60; σι 82	α 5.078; 5,035 st; γ; e ; g σ 2,6; σ ₁ 0,36	β 0,9 γ 634; (560; 369); e ⁻ σ ~ 1,6	sf α ?; β ? σ - 80
Am 236 4,4 m	Am 237	Am 238	Am 239	Am 240	Am 241 432,2 a	Am 242	Am 243 7370 a	Am 244	Am 245 2,05 h	Am 246	Am 247 22 m		454
ε α 6,41	α 6,042 γ 280; 438; 474; 909 9	a 5,94 y 963; 919; 561; 605 g	α 5,774 γ 278; 226 e ⁻ g	α 5.378 γ 988, 889 9	α 5,486; 5,443 st; γ 60; 26 e ⁻ ; g σ 50 + 570; σ _f 3,1	a 5.206 0.7 x st; y (49) y (42) o 1700 ay 7000 ay 2100	α 5,275, 5,233 st, γ 75, 44 σ 75 + 5 σ ₁ 0,074	e γ 744; γ (1084) 898; e ⁻ ; g 154; e ⁻ σ ₁ 1600 σ ₁ 2200	β ⁺⁺ 0,9 γ 253; (241; 296) θ ⁺⁺ ; g	2.2 y 679; y 1079; 205; 799; 154; 1062 756	β γ 285; 226 e		154
Pu 235 25,3 m	Pu 236 2,858 a	Pu 237 45,2 d	Pu 238 87,74 a	Pu 239 2,411 · 10 ⁴ a	Pu 240 6563 a	Pu 241 14,35 a	Pu 242 3,750 · 10 ⁵ a	Pu 243 4,956 h	Pu 244 8,00 · 10 ⁷ a	Pu 245 10,5 h	Pu 246 10,85 d	Pu 247 2,27 d	
ST α 5,85 γ 49; (756; 34) e ⁻	SI α 5,768; 5,721 sf; Mg 28 γ (48; 109); e ⁻ σ _f 160	sτ n 5,334 γ 60e ⁻ σ _f 2300	ST α 5,499; 5,456 uf; Si; Mg γ (43; 100); e ⁻ σ 510; σ _f 17	SI α 5,157; 5,144 sf; γ (52) θ ⁻ ; m σ 270; σ ₁ 752	SI a 5,168; 5,124 $st; \gamma (45)$ $0^{-}; g$ $\sigma 290; \sigma = 0.044$	ST β ⁻ 0.02; g α 4.896 γ (149); e ⁻ σ 370; σ ₁ 1010	SI α 4,901; 4,856 sf; γ (45) θ ⁻ ; g σ 19; σ _f < 0,2.	β ⁺ 0,6 γ 84; 9 σ < 100; σ₁ 200	SI α 4,589; 4,546 sf; γ σ ⁻ σ 1,7	β 0.9; 1,2 γ 327; 560; 308; g σ 150	β 0,2; 0,3 γ 44; 224; 180 m ₁	β-	
Np 234 4,4 d	Np 235 396,1 d	Np 236 22,5 h 1,54-10 ⁵ a	Np 237	Np 238 2,117 d	Np 239 2,355 d	Np 240	Np 241 13,9 m	Np 242 2,2 m 5,5 m	Np 243 1,85 m	Np 244 2,29 m	150		
 ε; β* γ 1559; 1528; 1602 σ1 - 900 	ε; α 5,025; 5,007 γ(26; 84); e g; σ 160 + ?	ε, β 0,5, ε, β , α γ (642; γ 160; 688); ε 104; ε g; σ ₁ 2700 g; σ ₁ 2600	α 4,790; 4,774 γ 29; 87; ε ⁻ σ 180; σ ₁ 0,020	β ⁻ 1,2 γ 984; 1029; 1026; 924; e ⁻ g; σ ₁ 2100	β 0,4; 0,7 γ 106; 278; 228; e ⁻ ; g σ 32 + 19; σ ₁ < 1	p φ.σ.; p 0.0 γ 555; γ 566; 597 974; 974; e 601; 601; hy; g 448; g	β 1,3 γ 175; (133) 9	β 2,7 β γ 736; γ 786; 780; 945; 1473 159 9 9	β- γ 288 9	β γ 217; 681; 163; 111 9	152	<i>i</i>	
U 233 1,592 · 10 ⁵ a	U 234 0,0055	U 235 0,7200	U 236	U 237 6,75 d	U 238 99,2745	U 239 23,5 m	U 240 14,1 h		U 242 16,8 m				
α 4,824; 4,783 Ne 25; γ (42; 97); e σ 47; σ ₁ 530	2,455 · 10 ⁵ a α 4,775; 4,723; st Mg 28; Ne; γ (53; 121) e ⁻ ; σ 96; σ ₁ < 0,005	26 m 7,038-10 ⁴ a α 4,398; sf Νe; γ 186 σ ⁻ σ 95; σ ₁ 556	α 4,494; 4,445; 1γ 1783; sf; γ (49; 642 sf e ⁻ ; σ 5,1	β 0,2 γ 60; 208 e σ - 100; σ ₁ < 0,35	270 ns. 4,468-10 ⁹ a h 2534 e 4,196st 1679. 2011 y 50s d v 271 y 50s v 271 y 150s	β 1,2; 1,3 γ 75; 44 σ 22; σι 15	β 0,4 γ 44; (190) e m		β γ 68; 58; 585; 573 m	compound systems			

Introduction PFGS characteristics as function of A, Z and E_x

Cf 239 Cf 240 Cf 241 Cf 242 Cf 243 Cf 244 Cf 245 Cf 246 Cf 247 Cf 248 Cf 249 Cf 250 Cf 251 ~ 39 s 1,06 m 3,78 m 3,68 m 10,7 m 19,4 m 43,6 m 35,7 h 3.11 h 333,5 d 350.6 a 13.08 a 898 a x 6,750; 6,708. 6,258; 6,217. x 5,812; 5,758. x 6,030; 5,989. 5,679; 5,849; 6,296; 6,238 π 7,59 x 7,392; 7,358 7.06; 7.17 7,209; 7,174 7,137. y (42; 96...) y (294; 448; 418...); e (43) 388; 333. (43...); e⁻ 177: 227. x 7,63 7,342 500; or 1700 2000; 01 < 35 2900; or 450 Bk 251 Bk 238 Bk 240 Bk 242 Bk 243 Bk 244 Bk 245 Bk 246 Bk 247 **Bk** 248 Bk 249 Bk 250 144 s 5 m 7 m 4,5 h 4.35 h 4.90 d 1,80 d 1380 a 23,7 h >9a 320 d 3,217 h 55,6 m 5,531; 5,710; - 0,1; α 5,419; β- 0,7; 1,8.. 5,888; 6,150 253; 381 799; 1081 .391. 989; 1032; 3- - 0,9; 1,1. a 6.575, 6.543. v 755, 946 6,662, 6,620, 892, 218, 922 84: 265. 834: 1124. 551... (327; 308... 1029. 178; 130; 700; 01 - 0. or 1000 153. Cm 238 Cm 239 Cm 240 Cm 241 Cm 242 Cm 243 Cm 244 Cm 245 Cm 247 Cm 249 Cm 250 2.4 h 3 h 27 d 32.8 d 162,94 d 29,1 a 18,10 a 8500 a ,56 · 107 64,15 m ~ 9700 a 6.113: 6.069 5.785 5.742 4,870; 5,267 - 0,9. 5,805; 5,762. x 5,361; 5,304 5,939... 402; 278. 634: (560: a 6,291; 6,248 (43...); e⁻⁻ 15: m 1.1 #; g ; 175; 133... ; 350; σ; 210 α ?; β⁻ ? σ - 80 369...); e⁻ σ ~ 1,6 188 60; or 82 6.52 Am 245 Am 246 Am 247 Am 236 Am 237 Am 238 Am 239 Am 240 Am 241 Am 242 Am 243 Am 244 26 m | 10,1 h 2,05 h 22 m 4.4 m 73.0 m 1,63 h 11,9 h 50,8 h 432,2 a 141 a 16 h 7370 a 25 m | 39 m sf β⁻¹,5... β^{-0,4} γ 744, γ (1084...) 898; σ⁻: g 154...: 1 σ₁1600 σ₁2200 ry (49), e' a 5,206.. st; y (49... σ 1700 0.6. 7. « 142 β⁻⁻ 1,2; β γ 679, 205; 154; 756. 154 β⁻⁻ 0,9... γ 253; (241; 296...) θ⁻⁻; g 5,275; 5,233. f; γ 75; 44... 75 + 5 5,486; 5,443 y 1079; 799; 1062... 280: 438: 474; 963: 919: 561 278, 228. 5,378 988, 889 y 60; 26 285: 226 019 6,41 Pu 245 Pu 246 Pu 235 Pu 236 Pu 237 Pu 238 Pu 239 Pu 241 Pu 243 Pu 244 Pu 247 14,35 a 4,956 h 10,85 d 2,27 d 25,3 m 2,858 a 45,2 d 87,74 a 2,411 - 104 8,00 · 107 a 10,5 h β⁻⁻ 0,9; 1,2... γ 327; 560; 308...; g σ 150 a 5,157; 5,144 β⁻ 0,02; g α 4,896... γ (149...); e⁻ σ 370; σ₁ 1010 a 5,499; 5,456. a 4,589; 4,546 a 5 768 5 721 3-0,2; 0,3 n 5,85 y 49; (756; 34 st; Mg 28 γ (48; 109…); e' σ₁ 160 5.334 7 60 e 7, 2300 sf; Si; Mg y (43; 100...); (8- 0.6. 44; 224; 180. γ 84...; g σ < 100; σ₁ 200 510: m 17 Np 236 Np 237 Np 241 Np 242 Np 243 Np 244 Np 234 Np 235 Np 239 Np 240 2,355 d 13,9 m 2,2 m 5,5 m 1.85 m 2.29 m 4.4 d 396,1 d 22,5 h 1,54 105 a 2,144 · 10⁶ a 7,22 m | 65 m - 2.2. y 555; 597 3⁻⁻0.9 γ 566 974; β⁻⁻2,7... γ 736; 780; 1473... 152 β⁺... 0,4; 0,7. β γ 786; 945; 159... e. β⁻⁻0,5... γ (642; 688...); e⁻⁻ g: σ₁ 2700 β⁻; α 160; γ 217; 681; 163; 111... BT 1.3. 007 106: 278: 4,790: 4,774 y 175; (133...) 288 (26: 84 228...; e~; g 160 + 232 + 19; 01 < - 900 U 238 U 240 U 242 U 233 13/234 U 235 U 237 .592 · 10⁵ a 0.0055 0,7200 6,75 d 99,2745 14,1 h 16,8 m compound systems a 4.824; 4.783. 26 m 7,038-10 0.2. 270 ns 4,468 · 105 B^{-0.4..} γ 68; 58; 585; 573... 44; (190...) Ne 25 60; 208. y (42; 97. r 47: or 530 100: 01

Introduction The Co-workers

Introduction The Co-workers

Quote: "It started as a family business... now it's

a "gang" ;-)"

Patrick Talou, July 6, 2017

Introduction "The Gang"

T. Belgya, R. Billnert, R. Borcea, T. Brys, A. Chatillon, D. Choudhury, S. Courtin, M. Fallot, G. Fruet, A. Gatera, W. Geerts, G. Georgiev, A. Göök, C. Guerrero, P. Halipré, F.-J. Hambsch, D.G. Jenkins, Z. Kis, B. Laurent, M. Lebois, L. Le Meur, A. Maj, P. Marini, B. Maróti, T. Martinez, I. Matea, A. Moens, L. Morris, V. Nanal, P. Napiorkowski, A. Porta, F. Postelt, A. Oberstedt, S. Oberstedt, L. Qi, L. Szentmiklosi, K. Takàcs, S. J. Rose, G. Sibbens, S. Siem, C. Schmitt, O. Serot, M. Stanoiu, D. Vanleeuw, M. Vidali, B. Wasilewska, J.N. Wilson, A.-A. Zakari, F. Zeiser ...

PhD students

- For many years: precise measurement of prompt fission γ-ray spectra (PFGS)
- Determination of characteristics:
 - < M_{γ}>, < ϵ_{γ} >, and <E_{γ ,tot}>
- Studies of the dependence of A, Z, and E_x
- Now: focus on the de-excitation process of fission fragments

Introduction

Sequential emission of neutrons and γ -rays

According to: Litaize & Serot, PRC 82, 054616 (2010)

Introduction

Sequential emission of neutrons and γ -rays

According to: Litaize & Serot, PRC 82, 054616 (2010)

- For many years: precise measurement of prompt fission γ-ray spectra (PFGS)
- Determination of characteristics:
 - < M_{γ}>, < ϵ_{γ} >, and <E_{γ ,tot}>
- Studies of dependence of A, Z, and E_x
- Now: focus on the de-excitation process of fission fragments
- Measurement of PFG angular distributions !

Correlations between fission fragments and γ -rays

Detector response matrix vs. transformation matrix

nuclear physics

Preliminary results Prompt fission γ-ray spectra (PFGS)

Good agreement between this work and a previously measured spectrum

Andreas Oberstedt

FIESTA 2017, Santa Fe (New Mexico), September 18-22, 2017

FIN-

Preliminary results Prompt fission γ-ray spectra (PFGS)

Good agreement between this work and a previously measured spectrum \rightarrow repeat for different cos θ bins !

FIESTA 2017, Santa Fe (New Mexico), September 18-22, 2017

FIN-

Fit: W(θ) = A₀ [1 + {A₂/A₀}P₂(cos θ) + {A₄/A₀}P₄(cos θ)]

Fit result: $\{A_2/A_0\} = 0.13 \pm 0.03$

Preliminary results Angular distributions for 500 keV energy bins

- \rightarrow again: fit of Legendre polynomials
- \rightarrow decomposition of multipolarities L = 1 and 2

Andreas Oberstedt

Preliminary results Multipolarity-dependent PFGS

- → multipolarity-dependent spectra
- → multipolarity-dependent PFGS characteristics

FIESTA 2017, Santa Fe (New Mexico), September 18-22, 2017

FIN-

Discussion

Previously measured angular distributions *)

Andreas Oberstedt

Discussion

Previously measured angular distributions *)

*) Hoffman, Phys. Rev. 133 (1964)

Discussion Comparison with FIFRELIN calculations *)

Good agreement between integral spectra!

Good agreement between integral spectra! But FIFRELIN also provides multipolarity-dependent PFGS.

Discussion

Comparison with FIFRELIN calculations *)

	Experiment (this	work)	Calculations (FIFRELIN)		
$ar{M}_\gamma$	8.28 ± 0.51		8.28	(adjusted)	
\overline{M}_{γ} (L = 1)	2.31	(28 %)	3.20	(39 %)	
\overline{M}_{γ} (L = 2)	5.97	(72 %)	1.45	(17 %)	
${ar M}_{_{\gamma}}$ (unknown)	າown)		3.63	(44 %)	
$\overline{\mathcal{E}}_{\gamma}$	0.79 ± 0.10	(MeV)	0.76	(MeV)	
$\overline{\mathcal{E}}_{\gamma}$ (L = 1)	0.86	(MeV)	0.94	(MeV)	
$\overline{\mathcal{E}}_{\gamma}$ (L = 2)	0.76	(MeV)	1.03	(MeV)	
$\overline{\mathcal{E}}_{\gamma}$ (unknown)			0.50	(MeV)	
$\overline{\overline{E}}_{\gamma}$	6.51 ± 0.76	(MeV)	6.30	(MeV)	
$\overline{\overline{E}}_{\gamma}^{'}$ (L = 1)	1.99	(MeV)	3.00	(MeV)	
$\overline{E}_{\gamma}^{'}$ (L = 2)	4.52	(MeV)	1.49	(MeV)	
$\overline{ar{E}}_{\!\gamma}^{'}$ (unknown)			1.81	(MeV)	

*) A. Chebboubi, priv. comm.

From our observations: unknown transitions \rightarrow L = 2, L = 2 + unknown \rightarrow L = 2'.

Discussion

Comparison with FIFRELIN calculations *)

	Experiment (this	work)	Calculations (FIFRELIN)			
$ar{M}_\gamma$	8.28 ± 0.51		8.28	(adjusted)		
$\overline{M}_{\gamma}^{'}$ (L = 1)	2.31	(28 %)	3.20	(39 %)		
$\overline{M}_{\gamma}^{'}$ (L = 2')	5.97	(72 %)	5.08	(61 %)		
${ar M}^{'}_{_{\gamma}}$ (unknown)						
$\overline{\mathcal{E}}_{\gamma}$	0.79 ± 0.10	(MeV)	0.76	(MeV)		
$\overline{\mathcal{E}}_{\gamma}$ (L = 1)	0.86	(MeV)	0.94	(MeV)		
$\overline{\mathcal{E}}_{\gamma}$ (L = 2')	0.76	(MeV)	0.65	(MeV)		
$\overline{oldsymbol{\mathcal{E}}}_{_{\gamma}}$ (unknown)						
\overline{E}_{γ}	6.51 ± 0.76	(MeV)	6.30	(MeV)		
$\overline{\overline{E}}_{\gamma}$ (L = 1)	1.99	(MeV)	3.00	(MeV)		
$\overline{E}_{\gamma}^{'}$ (L = 2')	4.52	(MeV)	3.30	(MeV)		
$\overline{ar{E}}_{\!\gamma}^{'}$ (unknown)						

*) A. Chebboubi, priv. comm.

- Measured angular distribution of prompt γ rays from ²⁵²Cf(sf) \rightarrow dominant E2 character, in good agreement with previous measurements
- With $< M_{\gamma} > \approx 8.3$ follows
 - $<M_{\gamma,L=1}> \approx 2.3$ and $<M_{\gamma,L=2}> \approx 6.0$

Sequential emission of neutrons and γ -rays

- Measured angular distribution of prompt γ rays from ²⁵²Cf(sf) → dominant E2 character, in good agreement with previous measurements
- With $< M_{\gamma} > \approx 8.3$ follows
 - $\langle M_{\gamma,L=1} \rangle \approx 2.3$ and $\langle M_{\gamma,L=2} \rangle \approx 6.0$
- Average spin of fission fragments is $J \approx 12 \hbar$, which seems a bit high, but still reasonable

- Measured angular distribution of prompt γ rays from ²⁵²Cf(sf) \rightarrow dominant E2 character, in good agreement with previous measurements
- With $< M_{\gamma} > \approx 8.3$ follows
 - $<M_{\gamma,L=1}> \approx 2.3$ and $<M_{\gamma,L=2}> \approx 6.0$
- Average spin of fission fragments is $J \approx 12 \hbar$, which seems a bit high, but still reasonable
- Comparison with FIFRELIN calculations shows rather good agreement ...

Outlook

- ... that is even better with a more realistic (?) assumption $\{A_2/A_0\} \approx -0.2$ for dipole radiation,
- leading to
 - $< M_{\gamma,L=1} > \approx 2.8 (34 \%)$ and
 - $< M_{\gamma,L=2} > \approx 5.5 (66 \%)$
- These results have to be compared with other related information on fission fragments, such as
 - average neutron separation energies
 - average moments of inertia etc.

The collaborators

A. Oberstedt, R. Billnert, A. Gatera, A. Göök, S. Oberstedt

Thank you!