Chi-Nu Measurement of the ²³⁵U and ²³⁹Pu Prompt Fission Neutron Spectra

Sept. 21, 2017: FIESTA 2017, Santa Fe, NM

K.J. Kelly¹ J.A. Gomez¹, J.M. O'Donnell¹, M. Devlin¹, R.C. Haight¹, T.N. Taddeucci¹, S.M. Mosby¹, H.Y. Lee¹, N. Fotiades¹, D. Neudecker¹, P. Talou¹, M.E. Rising¹, M.C. White¹, C.J. Solomon¹, C.Y. Wu², B. Bucher², M.Q. Buckner², R.A. Henderson²

¹Los Alamos National Laboratory ²Lawrence Livermore National Laboratory

LA-UR-17-XXXXX (DC Reviewed)

Slide 1 of 14

Macro-pulses are comprised of micro-pulses, each ~150 ps wide, separated usually by ~1.8 μs

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 2 of 14

Chi-Nu Goals, Method, and Challenges

The Chi-Nu Arrays

Characterizing the ⁶Li-glass Detector Response

- E = Initial *n* Energy
- E' = n Energy upon Detection
- $E_t =$ Measured *n* Energy via TOF

$$C(p(E), E_t) = \text{Counts measured at } E_t$$
$$= \int_{E_t}^{\infty} p(E) \int_0^{\infty} \mathcal{S}(E, E', E_t) \epsilon(E') \, dE' dE$$

$$S(E, E', E_t) =$$
Scattering Matrix

$$p(E) = \mathsf{PFNS}$$

 $\epsilon(E') = \text{Detector Efficiency at } E'$

 $\mathcal{R}(E, E_t) = \text{Response Matrix}$

$$\mathcal{R}(E, E_t) = \int_0^\infty \mathcal{S}(E, E', E_t) \, \epsilon(E') \, dE'$$

DS Alamos [†]J.M. O'Donnell, Nucl. Instrum. and Methods A, 805 (2016) 87 Slide 5 of 14

MCNP[®] ⁶Li-glass Detector Response Matrix, $\mathcal{R}(E, E_t)$

Detector Response Changes with Experimental Environment

MCNP[®] Liquid Scintillator Response Matrix

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Method of PFNS Extraction: Ratio-of-Ratios Method[†]

Based on the approximate equality of $rac{C(m{p}_lpha(E),E_t)}{m{p}_lpha(E_t)}pproxrac{C(m{p}_eta(E),E_t)}{m{p}_eta(E_t)}$

True within ~5–10% for a typical PFNS

$$egin{aligned} \mathcal{D}_{lpha} &= ext{Double Ratio} \ &= rac{\mathcal{C}(m{p}_{lpha}(E), E_t)/m{p}_{lpha}(E_t)}{\mathcal{C}(m{p}_{maxw}(E), E_t)/m{p}_{maxw}(E_t)} \end{aligned}$$

Average over reasonable PFNS range and set equal to the experimental ratio

$$\frac{1}{\kappa} \sum_{\alpha=1}^{\kappa} \frac{C(p_{\alpha}, E_{t})}{p_{\alpha}(E_{t})} = \frac{C(p_{exp}, E_{t})}{p_{exp}(E_{t})}$$
$$\Rightarrow \boxed{p_{exp}(E) = \frac{C(p_{exp}, E_{t})}{\frac{1}{\kappa} \sum_{\alpha=1}^{\kappa} \frac{C(p_{\alpha}, E_{t})}{p_{\alpha}(E_{t})}}}$$

 \rightarrow Quickly extracts PFNS \rightarrow Uncertainties are increased to account for bias towards average PFNS

T.N. Taddeucci et al., Nucl. Data Sheets, 1232 (2015) 135 Slide 8 of 14

Preliminary ²³⁹Pu PFNS: 2nd-Chance Fission Region

²³⁵U Combined HE (preliminary) and LE Results

Future Analyses: Forward Analysis

CoH₃ Los Alamos Model Forward Analysis Progress

 Fission barrier heights will be varied in multi-chance fission regions
 Los Alamos [†]D. Neudecker *et al.*, Nucl. Instrum. and Methods A, **791** 80

CoH₃ Los Alamos Model Forward Analysis Progress

• Within each iteration of a ROOT TF1:

- Run CoH₃, read in PFNS, Convert PFNS with $\mathcal{R}(E, E_t)$, compare to data
- Fission barrier heights will be varied in multi-chance fission regions
 Los Alamos † D. Neudecker et al., Nucl. Instrum. and Methods A, 791 80
 Silde 13 of 14

Future Directions

- Systematic Uncertainties:
 - MCNP[®] nuclear physics
 - Background normalization
 - Other sources
- More sophisticated analyses
 - Forward Analysis
 - Unfolding
- Finalize HE analysis of ²³⁵U
- Finalize LE analysis of ²³⁹Pu
- Analyze HE ²³⁹Pu data

