Diagnostic Imaging Using Contrast from Fission

Paul Hausladen Oak Ridge National Laboratory

Los Alamos National Laboratory FIESTA Fission School and Workshop

September 22, 2017

Unknown object

• Interrogate with photons (from the sun)

Measure emitted radiation with an imaging detector (eye)

National Laboratory

- Position sensitive detector
- Known mapping between detector pixel and object voxel
- 4 Diagnostic Imaging Using Contrast from Fission

Elements of Imaging

- Acquire data (e.g., RGB intensities)
- Process detector signals in data acquisition

Elements of Imaging

- Acquire data (e.g., RGB intensities)
- Process detector signals in data acquisition
- Then, do something with the information (e.g., recognize Avneet)

• If Avneet emits radiation, then passive measurements are possible without interrogation

Imaging Fission: Idea

In principle, the process for imaging fission is the same

Object

- Use stimulated or spontaneous fast-neutron emission to indicate fission
- Use collimation of source or detector to achieve mapping between each neutron and a unique path though object

ational Laboratory

Stimulated Emission: Associated-Particle Technique Using D-T Neutrons

- Interrogate using fast (14 MeV) neutrons produced by the $d + t \rightarrow \alpha + n$ reaction
- The α and n are emitted simultaneously in opposite directions
- Detection of the alpha particle determines the time and direction of emitted neutron

Experimental Imaging System

YAP:Ce alpha detector Segmented readout

Left, D-T neutron generator with alpha detector (512 initial neutron directions).

Plastic scintillator block detector. Fast, positionsensitive neutron detectors (3,200 total pixels).

 Imaging system has a D-T neutron generator with alpha detector, highly segmented neutron detectors, and commercial data acquisition system (Siemens Inveon preclinical position emission tomography [PET] system)

Stimulated Emission Simulation

- Instances of stimulated fission identified by detection of multiple late neutrons
- Instances of stimulated fission associated with interrogating neutron direction

Stimulated Emission Backgrounds

0 ns

 Fission competes with other reaction backgrounds as well as scattering between detectors

- Almost all materials yield some amount of late-arriving singles and doubles from incident 14-MeV neutrons
- Estimate of yield for all materials from tabulated (n,nγ), (n,np), (n,nd), (n,nt), (n,n³He), (n,nα), (n,n2p), (n,npα), (n,n2α), (n,nd2α), (n,nt2α), (n,n3α), and (n,f) cross sections in evaluated nuclear data

Example Experimental Data (1)

 Photographs and projection data where transmission is shown in grayscale, induced neutron doubles are shown in red, and hydrogen scatter is shown in blue

Example Experimental Data (2)

 Photographs and projection data where transmission is shown in grayscale, induced neutron doubles are shown in red, and hydrogen scatter is shown in blue

Example Experimental Data (3)

 Photographs and projection data where transmission is shown in grayscale, induced neutron doubles are shown in red, and hydrogen scatter is shown in blue

Reconstructed Images of (3)

Object

Transmission

Fission (neutron doubles)

• Tomographic reconstruction of induced neutron doubles (fission) identifies depleted uranium (DU) storage casting

18 kg HEU or DU

3 DU shields

Transmission

Doubles

Combined

OAK RIDGE

- Fission imaging can identify HEU, even shielded by DU
- Not distinguishable via transmission measurements

Measuring at Y-12

Shielded HEU

Shielded HEU

- Idaho National Laboratory inspection object (IO) #7 contains HEU (yellow) shielded by DU (black/gray)
- Induced-fission tomography identifies HEU portion

Emission Tomography

- ORNL developing a new capability to perform passive fast-neutron emission tomography for spent nuclear fuel
- Why? To support item accountability by verifying the integrity of spent fuel assemblies before transfer to difficult to access storage
- Challenges
 - Sufficient spatial resolution to identify individual fuel pins
 - Sufficient efficiency to measure on an appropriate time scale (~1 h)
 - Sufficient insensitivity to gamma rays to handle the relevant gamma dose rates

Present Integrity Verification

- Primary tools for verifying assemblies are the Digital Cherenkov Viewing Device (DCVD) and fork detector (FDET)
 - DCVD provides quantitative measure of amount of Cherenkov light induced in water channels between fuel rods
 - FDET measures combined total gamma and neutron activity

Present Integrity Verification

"The major common weaknesses of the DCVD and FDET is that **the detection probability is null** for carefully designed low-level diversions of a few fuel rods in each fuel assembly within a large population." –A. Lebrun, IAEA Nondestructive Analysis Section Head

> OAK KIDGE National Laboratory

Basis of Verification Using Neutron Imaging

0.00018

0.00016

0.00014

0.00012

0.0001 0.00008 0.00006 0.00004 0.00002

0

0

10

Atoms/ba

- Verifying integrity (i.e., all fuel pins are present)
- Use fast neutrons (primarily from ²⁴⁴Cm spontaneous fission)
- Neutron intensity as a function of burnup gives sensitivity to replacement pins that are subsequently irradiated

NOT confirming Pu

20

30

Burnup (GWd/MTU)

 Pu content only known to a few percent from burnup codes

40

50

60

 Pu content saturates with exposure (minimally sensitive to pin replacements made after first cycle in reactor)

Imaging Approach

- Imaging (emission tomography) fully uses available information to account for complicated geometries and identify emissions from individual fuel pins.
- Would you detect the absence of a single star in the night sky by measuring the total brightness of the night sky?

http://rsaa.anu.edu.au/news-events/mt-stromlo-observatory-public-astronomy-nights-5

• Fast neutrons enable penetration of high-atomic number shielding to verify an entire volume rather than its surface, providing the highest sensitivity to diversion with subsequent irradiation of substituted pins. OAK RIDGE National Laboratory

- Imaging depends on isolating lines of response through an object, where neutrons originate along a known path
 - Achieved via collimation
- Expect the scale of the collimator to be ~30 cm thick (will not work if substantially smaller)

- To work, detector pixels and collimator slit spacing need to be large (~5 cm), especially for moderated detectors
- Two conventional options: parallel slit requires scanning, pinhole requires lacksquarelarge size OAK RIDGE National Laboratory

Novel Collimator Design

There is a non-scanning and compact design option that uses many detectors

National Laboratory

 Equivalent to a parallel slit collimator, but each slit position is rotated to distribute endpoints evenly over outer diameter to make space for large detectors and spacing between slits

Parallel-slit versus Radial Collimator

• Acquires same data as parallel-slit collimator but in a different order

Imager Concept

- Steel and borated polyethylene (BP) collimator with 100 slits to isolate lines of response
- Stainless steel (SS) for structural integrity and shield detectors from gammas
- Annulus of 100 detectors that wrap around the fuel detects neutrons
- Fuel and detectors stationary, collimator rotates to perform tomography
- Annular design gives compact size

Radiation resistant

Boron straw detectors (instrumented singly) can handle fields as high as 1,000 R/h

Efficient

- Large detectors
- Close to source
- No scanning, all lines of response measured simultaneously

Point-source Response

 Performance of collimator encoded in the point spread function (PSF) that quantifies line of response to a point source

> OAK RIDGE National Laboratory

 Vary slit width, collimator materials, and collimator thickness to maximize signal to noise ratio (SNR) for individual pins

Point-source Response

- Resolution is limited by slit width, slit bore scattering, and scattering in detectors
- Dominant limitation is scattering of neutrons into neighboring detectors before capture

Point-source Response

- SNR is limited by penetration of the collimator
- Note all (264 pins) contribute to background
- Additional background from nearby pins and poor resolution

- SNR depends on the PSF
 - Goes to 0 with a collimator that is too thin (no modulation) or too thick (no counts)
 - Goes to 0 with slits that are too wide (no resolution) or too narrow (no counts)
 - Somewhere in the middle is optimal
- SNR estimate's assumptions
 - 2.55 × 10⁵ n/s/m/fuel pin
 - Neglects scatter and self-attenuation within the spent fuel assembly

Sample Reconstruction of Five Sources

Calculated Sinogram

Measured Sinogram

OAK RIDGE National Laboratory

Calculated PSF is consistent with resolving neighboring fuel pins (40 GWd/tU, 10 min)

Reconstruction of Many Sources

Calculated Sinogram

Measured Sinogram

 Calculated PSF is consistent with identifying missing fuel pins

Acknowledgments

Collaborators

- Matthew Blackston, Jason Newby, Felix Liang, Lorenzo Fabris, Seth McConchie, Jianwei Hu, Jinan Yang, Philip Bingham, John Mihalczo, and Jim Mullens
- Oak Ridge Associated Universities: Anagha Iyengar
- Organizations
 - Siemens Molecular Imaging, Agile Technologies, and Gannon Systems
- Support
 - DNN R&D, DTRA, ONV

