The European Commission's science and knowledge service

÷.

1

.

Joint Research Centre

Experimental Measurements of Prompt Fission Neutrons and γ-rays

÷

F.-J. Hambsch

FIESTA2017 School and Workshop, Santa Fe, NM, Sept. 18 – 22, 2017

Table of content

- **General aspects of neutron and γ-emission**
- Prompt neutron measurements
- Prompt γ-ray measurements
- Conclusions

The fission process

prompt neutrons (10⁻¹⁸ s)

The fission process

Compared to eV in chemical reactions

Fission fragment de-excitation

- Excitation energy of the fragments is dissipated through particle emission, here essentially neutrons and γ-rays
- > On average 2 4 neutrons are released
- The exact value depends on the isotope and the excitation energy of the compound nucleus e.g. for ²³⁵U ~2.4)
- The average energy of a neutron in the LS is around 2 MeV showing a white spectrum
- On average 6 10 γ-rays are emitted too, with a mean total energy release of about 7 9 MeV

Fission fragment de-excitation

>Observable quantities:

- Spectral characteristics (neutrons and γ-rays)
 - Average multiplicity (/fission)
 - Average total energy (/fission)
 - Average photon energy (/fission)

Correlations with fission fragment characteristics

v(A*, TKE), <E_{tot}>(A*, TKE),

Correlation of prompt *γ***-ray data with PFN**

How to measure neutrons and γ-rays

Prompt neutron measurements

- Suitable detectors
- Any material with a high capture cross section for neutrons (H, He, Li, B, Gd)
 - He-3 counters
 - Boron (BF₃) counters
 - Lithium-glass detectors
 - Liquid scintillator detectors (mainly containing H)

Choice of material (large interaction cross section)

Figure 3.30 Neutron cross sections for several isotopes. Data from Garber and Kinsey (1976).

F. Sauli, Gaseous Radiation Detectors, Cambridge U. Press, 2014

Lithium-glass detectors:

- **Enriched** in ⁶Li: ⁶Li(n,t)α
- Exothermic reaction: Q = 4.8 MeV

CONs:

Relatively low detection efficiency

Bad timing resolution -> need for small crystals

Lithium-glass detectors:

Determine background

> Detectors based on liquid scintillator(s):

- Gd loaded scintillation tanks
- NE213 equivalent scintillators (pulse shape discrimination)

Liquid scintillation tank

- Pros:
- > High efficiency (4π geometry)
- Large thermal neutron capture cross section of Gd isotopes
- Release of a high energy gamma cascade
- Cons:
- High toxicity (xylene- or dioxane-based) scintillator
- Low flash point -> highly flammable
- NO pulse shape discrimination

Liquid scintillation tank (CEA-Arpajon)

- **> 85 % eff for fission neutrons**
- > Two hemispheres (r=60cm)
- ▶ 950I (C₉H₁₂) with 0.5% Gd
- > 24 phototubes
- Can be combined with other Detectors (e.g. NE213)

Liquid scintillation tank (used at PNPI, Gatchina, Russia)

 $2 \ge 2\pi$ -geometry

> Prompt neutron measurements (white spectrum)

Relativistic equation

$$E_n = (\gamma - 1)m_n c^2 = \left(\frac{1}{\sqrt{1 - \frac{L^2}{\Delta t^2} \frac{1}{c^2}}} - 1\right)m_n c^2$$

> m_n = 939.56533 MeV/c²
 > c = 0.299792458 m/ns
 > ∆t : time of flight (TOF)

$$\left(\frac{\sigma_E}{E}\right)^2 = 2\left[\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_{\Delta t}}{\Delta t}\right)^2\right]$$

Measurement with passive sample

- Use of massive targets (several g)
- > Pulsed neutron beam (usually low beam currents; $1 2 \mu A$)
- > In general leads to a sufficiently high event rate
- Resolution depends on beam pulse
- Minimum neutron energy depend on incident neutron energy
- Multiple scattering in the sample

> The measurement environment (direct reaction):

Limited number of detectors
 Contributions from neutron scattering
 Simulation by means of MCNP or Geant4

Measurement with an active sample

- > Continuous neutron beam (high beam currents; > 20 μ A)
- Allows to measure neutrons below the beam energy
- Allows measuring at different energies with changing particle beam

> Multiple scattering in the detector to be taken care of

> The measurement environment (direct reaction):

Limited number of detectors Contributions from neutron scattering...

> Detectors based on liquid scintillator(s):

Very fast detectors (e.g. IC): σ_t < 1 ns</p>

> Neutron – γ separation by means of TOF

Detectors based on NE213 liquid scintillator(s):

- Allow pulse shape discrimination
- Electrons and recoil protons excite different fluorescent levels

Fast **Slow signal** d'un scinitillateur Totale Intensité lumineuse Fluorescence rapide Réponse Fluorescence retardée roton mn Temps 200 400 600 ns 0 Temps [ns]

Detector signal shows different fall times

Detector calibration

Selection of γ**-rays sources for calibration**

Source	E_{γ} [keV]	E_{ee} [keV]	Type	Résolution B1 [%]
^{133}Ba	81	81	\mathbf{FE}	$59,98 \pm 0,2$
^{133}Ba	356	207	CE	$29,27 \pm 3,2$
^{22}Na	511	340,7	CE	$20,7 \pm 2,3$
²⁰⁷ Bi	569	393,3	CE	$20,2 \pm 2,0$
^{137}Cs	662	$477,\!65$	CE	$18,2 \pm 1,6$
²⁰⁷ Bi	1063	857,7	CE	$14,8 \pm 0,9$
²² Na	$1\ 275$	$1\ 061,7$	CE	$12,8 \pm 0,7$
²⁰⁷ Bi	1770	$1\ 546,9$	CE	$10,0\pm0,6$
AmBe	$4 \ 430$	4 196	CE	$8,5 \pm 0,4$
$Pu^{13}C$	$6\ 130$	5 883	CE	$7,8 \pm 0,3$

Use of mono-energetic neutron beams for calibration CE: Complete

CE: Compton Edge FE: Photo peak

Detector calibration

> Response of LS detectors to neutrons and *γ*-rays:

Detector calibration

> Response of LS detectors to neutrons and *γ*-rays:

Efficiency curve

> Response of LS detectors to neutrons and γ-rays:

N. V. Kornilov et al. NIMA599 (2009) 226

> And finally: a prompt fission neutron spectrum

Energy dependence of PFN emission

Boikov et al., EXFOR: 41110

A. Tudora et al. et al., ANE 35 (2008) 1131

Prompt neutron measurements

fragment velocity

laboratory frame

What you measure, relevant for application

Transformation from the LS to CMS

European Commission

- > Emission of neutrons from fully accelerated fragments
 - Obtain basic kinematic information in laboratory-frame
 - Reconstruct emission process in fission fragment restframe

> Unbiased selection of events: $\cos\theta_{CM} \ge 0$

The angle between the fission axis and the neutron vector is needed:

Grid gives polar angle θ

SCINTIA array (JRC-Geel)

Array of 22 neutron detectors

- ✓ SCIONIX LS301 (different sizes)
- ✓ P-Therphenyl (Φ=8.5 cm, h=6.8 cm)

Double Frisch-grid position sensitive IC

Fission fragment detector

Twin Ionization Chamber

- Energies and Masses of fission fragments
- Large Geometrical Efficiency
- Timing resolution ~1 ns (FWHM)
- ✓ Polar angle θ of fission axis relative to the chamber axis
- Need for azimuthal angle ϕ

Position Sensitive Electrodes

- Replaces anodes
 - wire plane + strip anode
 Projection of fission-axis
 on the electrode plane
- Fission axis orientation in 3D

Azimuthal angle of fission axis around chamber symmetry axis is determined from charge division read-out of position sensitive anodes

Motivation

PFN multiplicity correlations with fragment observables

Based on energy balance in fission

- Detailed modelling (CGMF, Fifrelin, Freya...)
 - successfully reproducing correlations in the case ²³⁵U(n,f)
 - » difficulties: in particular v(TKE)

Lemaire et al. (2005) "...a dramatic deviation between calculation and experiment on v is observed at low TKE that would indicate the presence of additional opened channels"

Kornilov et al. (2007) "The incorporation of the SCN emission leads to a much better agreement between theoretical and experimental data for v(TKE) in the high energy range. However, the assumption of SCN emission at high TKE should be confirmed with direct experimental data"

Validation of method ²⁵²Cf(sf) and single NE213 detetcor PHysical Review C 90, 064611 (2014)

> Results show consistency with literature data

Specifically with methods that do not suffer from neutron energy detection threshold

(Dushin et al.) Gd-loaded 4π scintillator tank

Multiplicity vs. Fragment Mass of ²³⁵U(n,f)

E_n ∈ **[0.3 eV, 60 keV]**

Pronounced minima around $A_L = 80$ and $A_H = 130$

Shoulders around $A_L = 100$ and $A_H = 140$

Multiplicity vs. Fragment TKE of ²³⁵U(n,f)

explained by difference in incident neutron

European Commission

Multiplicity vs. Fragment TKE

- Wide TKE-distributions
- Significant Yield at TKE>Q_{max}
- ⇒ Resolution broadening
- Decreased slope
- Increased neutron yield at Q_{max}

Tailing of TKE distribution

- Energy degraded scattered fission fragments
- Neutron yield should approach average nubar
- Drop in nubar at low TKE
- Present also in our data

Array of 54 neutron detectors

✓ Multi plate IC

✓ Measure PFNS as a fct of E_n

Chi-nu array (LANL)

How to measure neutrons and γ-rays

Prompt γ-ray measurements

D. Regnier, PhD-thesis (2013)

Separation of γ **-rays from prompt neutrons**

- Time-of-flight method
- Excellent timing resolution of the combined γray and fission detector
- Determines the geometrical efficiency of your instrument
- Best possible energy resolution

Fission detectors: FGIC, Si-detectors, singlecrystal diamond detectors (σ_t < 100 ps)</p>

Choice of suitable *γ***-ray detectors:**

- High purity germanium detectors
- Excellent energy resolution, bad timing resolution
- Fragments moving \rightarrow Doppler broadened γ -peak
- Very neutron sensitive

Choice of suitable *γ***-ray detectors:**

- High purity germanium detectors
- Excellent energy resolution, bad timing resolution
- Fragments moving \rightarrow Doppler broadened γ -peak
- Very neutron sensitive
- Scintillation detectors
- Limited energy resolution
- In general much better timing resolution
- Higher efficiency, larger sizes available

Scintillation detectors:

In the 1970s sodium iodine (NaI) was used

- ✓ Timing resolution of the order of 5 7 ns
- Energy resolution 7% @ 662 keV
- TOF distance 1m or larger
- Limited geometrical efficiency

Since a few years new detectors have emerged

Lanthanum halide detectors

Lanthanide halide detectors:

CeBr₃ detector

P. Guss et al. NIMA 608 (2009) 297

Lanthanide halide detectors:

- Cerium-doped lanthanum chloride (LaCl₃:Ce)
- Cerium-doped lanthanum bromide (LaBr₃:Ce)
- Cerium bromide (CeBr₃)
- BGO: Bismuth Germanium Oxide

Red: PFGS, Green: Isomer decay, inelastic scattering, Blue: intrinsic bgrd

Commission

Detector response to different γ-ray energies

Optimized response function simulations (GEANT4) to better reproduce the backscatter peak

Unfolding the detector response

Measured ²⁵²Cf(SF) prompt fission γ -ray energy spectrum

 \rightarrow e.g. zooming into region around 3 MeV

>Unfolding the detector response

Simulating response function for mono-energetic γ -rays,

distance: FWHM from energy resolution measurements

100s of γ **-ray peaks**

Unfolding the detector response

Adjusting simulated spectra to measured γ-ray spectrum and determining the scaling factors

Unfolding the detector response

>Unfolded emission spectrum

Commission

R. Billnert, et al., Phys. Rev. C87, 024601 (2013)

New detector response calculations

PhD thesis work of A. Gatera

Other devices

> DANCE (LANL), 4\pi array BaF₂ detector array)

Conclusions

- Fission is a complicated process
- Prompt neutron and γ-ray emission gives insight

into the physics of the process

- Improved detection systems allow to get better quality data
- Importance of correlations of particle emission and fission fragment properties
- Importance of simulation of the experiment
- Be honest and show all relevant information

Thank you very much for Your attention

