

The European Commission's science and knowledge service

Prompt Fission Neutron Emission in the Reaction ²³⁵U(n,f)

Alf Göök, F.-J. Hambsch, S. Oberstedt Joint Research Centre - Geel

FIESTA 2017

Santa Fe New Mexico Sept. 17-22, 2017

European Commission

Introduction & Motivation

Prompt Fission Neutron (PFN) multiplicity in resonances

Data relevant for improved evaluations as requested by the OECD/ Working Party on Evaluation Cooperation (WPEC)

- □ ²³⁹Pu strong (~5%) fluctuations of neutron multiplicities $\bar{v}(E_n)$
- □ ²³⁵U minor (~1%) fluctuations of neutron multiplicities $\overline{v}(E_n)$
- □ Fluctuating $\bar{v}(E_n)$ can have significant impact on k_{eff}
- Measure neutron multiplicity as a function of neutron energy in the region of the resonances

Introduction & Motivation

Why does $\bar{v}(E_n)$ fluctuate?

- □ ²³⁹Pu strongly fluctuating influence of ($n\gamma$,f)
 - Difference according to resonance spin

 0^+ : $<\Gamma_f> = 2 \text{ eV}$: weak $\bar{\nu}$ -fluctuations

1⁺ : $<\Gamma_f>$ = 30 meV : strong \bar{v} -fluctuations

- □ pre-fission photon $\langle E_{\gamma} \rangle \sim 1 \text{ MeV}$
- ²³⁵U not clear?
 - $\hfill\square$ No established correlation of \bar{v} and spin
 - $\hfill\square$ No established correlation of \bar{v} and Γ_{f}
 - Experimental evidence for fluctuating properties of fission fragment Y(A,TKE)
- \square Study correlations between fragment properties and \bar{v}

Neutron Source - GELINA

GELINA ToF-facility

- Pulsed white-neutron source
 - Pulse width <1 ns (FWHM)
- Neutrons (mainly) from ²³⁸U(γ,f)
 - H₂0 moderated
- n-energy via time-of-flight
 - 9 m flight-path
 - Resolution $\delta t \sim 1 \text{ns}$ (FWHM)
 - E_n<100 eV : δE<1 eV

Commission

Experimental Setup

Fission fragment detector

- twin ionization chamber
 - ✓ Fragment properties from 2E-technique
 - ✓ Orientation of fission-axis

Prompt neutron detection

array of 22 scintillators

Target		
²³⁵ UF ₄	67.2	µgU/cm ²
gold	50	µg/cm²
polyimide	27	µg/cm ²

Fission Fragments

Fragment masses are determined via 2E-technique

- Corrections
 - Energy loss in sample & backing
 - Neutron Evaporation

- Resolution: ~5 u (FWHM) mainly limited by PFN emission
- Good agreement with high resolution measurement

Prompt Fission Neutrons

Pulse-shape discrimination is used to separate prompt fission neutrons and γ-rays

Residual γ -rays supressed by applying a pulse-height threshold

PFN energy is determined from time-of-flight

Background rate determined from events to the left of the prompt γ -ray-peak is determined as a function of incident neutron energy

Neutron Detection Response

Neutron detection response is modelled with GEANT4

The simulations are benchmarked against standard PFNS of ²⁵²Cf(sf)

- ✓ Detection efficiency $\epsilon(E)$
- ✓ Multiple-scattering correction
 - ✓ Ratio of observed spectrum to input spectrum in Monte-Carlo

PFN spectrum

The neutron energy spectrum

- integrated over the incident neutron energy range (0.3 eV - 45 keV)
- Generally: agreement with thermal PFNS
- The observed PFNS is slightly softer than the thermal PFNS

Kornilov 2010 – Nucl. Sci. and Eng. 165 (2010) 117 ENDF-B.VIII. β 4 - IAEA (standards 2017) GMA evaluation

Transformation into c.m. - frame

- Event by Event transformation into the c.m. frame
- > Selection $\theta_{c.m.} < 90^{\circ}$
- Measured distribution consist of neutron from both fragments
 - Due to the kinematic boost the main contribution is from fragment directed towards detector
 - Complimentary fragment neutrons are treated as perturbation
 - Probability of detecting neutron from complementary fragment is calculated based on the observed c.m. neutron spectrum and assumption of isotropic emission from fully accelerated fragments

Multiplicity vs. Fragment Mass

Neutrons per fragment

Saw-tooth distribution

Pronounced minima around $A_L=80$ and $A_H=130$

Additional structures around $A_L=100$ and $A_H=140$

Neutrons per fission

Flatter distribution

Pronounced minimum at $A_H = 132$ (double shell closure ¹³²Sn)

Multiplicity vs. Fragment TKE

Close to linear dependence

 $-\frac{\mathrm{dTKE}}{\mathrm{d}\overline{v}_{T}}$ = 12.0 MeV/n

Significantly different compared to earlier studies

- Wide TKE-distributions
- Significant yield at TKE>Q_{max}
- $\circ~$ Effect of TKE-resolution on $\bar{\nu}(\text{TKE})$
 - Decreased slope
 - ▷ Increased \bar{v} at TKE ≥ Q_{max}

Multiplicity vs. Fragment TKE

Comparison with available de-excitation models

- Major discrepancy between theory and experiment resolved
- No additional sources of neutrons necessary

Neutron multiplicity in the resonances

Resonance Energies (eV) - no scale

Fluctuating $\overline{v}(E_n)$ in the resonances

Constant $\overline{v}(E_n)$: $\chi^2/ndf = 47.4/30$

□ Fluctuating $\overline{v}(E_n)$ supported by positive linear correlation with literature data

Howe : $\rho = 0.48 \pm 0.18$

Reed : $\rho = 0.29 \pm 0.22$

Neutron multiplicity in the resonances

Interpretation of the $\overline{\nu}$ - fluctuations

Resonance Energies (eV) - no scale

Changing TKE from resonance to resonance

- TKE in the resonances on average larger than for thermal neutron induced fission
- TKE can change by ~250 keV for a difference in incident neutron energy of ~2 eV
- Energy balance \Rightarrow TKE vs \overline{v} : anti-correlation?

Interpretation of the $\overline{\nu}$ - fluctuations

Resonance Energies (eV) - no scale

Interpretation of the $\overline{\nu}$ - fluctuations

Resonance Energies (eV) - no scale

Fragment properties

Changes in TKE are caused by changes in the mass yield

Fragment properties and neutrons

Correlation between the changes in Y(A) and $\overline{\nu}$

- Established for resonances with $\delta\overline{\nu}$ / $\overline{\nu}$ <1%
- Explains \overline{v} fluctuations

Commission

Summary and Conclusions

Correlations between properties of **fission fragment and prompt neutrons** has been studied **in ²³⁵U(n,f) induced by resonance neutrons at GELINA**.

The TKE dependence of the number of neutrons emitted per fission shows an inverse slope **dTKE/dv** ~35% smaller than observed in studies of thermal neutron induced fission. The **difference can be explained by improved fission** fragment TKE resolution in the present experiment.

Correlated fluctuations in the fission fragment **mass distribution and TKE as a function of resonance neutron-energy** is confirmed, with **increased accuracy**.

Structures in $\bar{\mathbf{v}}$ as a function of resonance neutron-energy is **confirmed** as well.

Due to increased statistical accuracy in the fission fragment data, a **clear** correlation between the changes in \overline{v} and the changes in fission fragment mass distributions could be established.

Thank you for the attention!

Angular Distribution in c.m. - frame

Neutron Recoil to fragment \vec{v}_{CM} V. Momentum transfer ➔ fragment energy change θ_{CM} $E_{\text{post}} = E_{\text{pre}} \frac{m_{\text{post}}}{m_{\text{pre}}} - \frac{p_{\text{n}} p_{\text{pre}}}{m_{\text{pre}}} \cos \theta_{c.m.}$ ·θL **v**_{CM} M_F \vec{v}_{F} 8 ²⁵²Cf(sf) Isotropic emission corrected uncorrected → 2nd term averages out 6 $\langle \cos \theta_{c.m.} \rangle = 0$ 5 ∇^{\perp} Fragment neutron coincidence → biased selection $\langle \cos \theta_{c.m.} \rangle \neq 0$ 0⊑ 140 160 180 200 220 TKE (MeV) European 25

Commission

Effect of neutron recoil correction ²⁵²Cf(sf)

- Results show consistency with literature data
- Specifically with methods that do not suffer from neutron recoil bias
 - (Dushin et al.) Gd-loaded 4π scintillator tank

PFN multiplicity correlations with fragment observables

Fission fragment de-excitation models

- Evaluation tools
- Detailed modelling (CGMF, Fifrelin, Freya...)
 - successfully reproducing correlations
 - in the case ²³⁵U(n,f)
 - » difficulties: in particular $\bar{\rm v}({\sf TKE})$

Lemaire et al. (2005) "...a dramatic deviation between calculation and experiment on v is observed at low TKE that would indicate the presence of additional opened channels"

Kornilov et al. (2007)

"The incorporation of the SCN emission leads to a much better agreement between theoretical and experimental data for v(TKE) in the high energy range. However, the assumption of SCN emission at high TKE should be confirmed with direct experimental data"

Fission fragment detector

Twin Ionization Chamber

- Energies and Masses of fission fragments
- Large Geometrical Efficiency
- ✓ Timing resolution ~1 ns (FWHM)
- ✓ Polar angle θ of fission axis relative to the chamber axis

Position Sensitive Electrodes

- Replaces anodes
 - wire plane + strip anode

Projection of fission-axis on the electrode – plane

✓ Fission axis orientation in 3D

Position sensitive ionization chamber

²³⁵U(n,f)

4

Distribution of fission events on the target plane. Determined by linear interpolation between the coordinates of fission fragments detected on opposite side of the ionization chamber.

²⁵²Cf – source

- Circular spot
- 5 mm diameter

Multiplicity vs. Fragment TKE

Comparison with available de-excitation models

- Major discrepancy between theory^[*] and experiment resolved
- No additional sources of neutrons necessary

Nucl. Data Sheets 131 (2016)

European Commission

[*]

Determining the Fission Axis Orientation

The polar Angle θ

from drift time of free electrons in the gas.

Azimuthal angle ϕ

from difference in x-coordinates and y-coordinates for the fission fragments detected on the opposite chamber sides.

Position sensitive ionization chamber

Selection of prompt neutrons

Determining the Fission Axis Orientation

Orientation of fission axis relative to chamber symmetry axis is determined from drift time of ionization electrons

34

Neutron Angular Distributions

-relative to the light fragment direction

35

Consistent results from the 22 individual detectors

Analysis of PFN angular distributions

Assuming emission from accelerated fragments

Analysis of PFN angular distributions

Generally good description

- Underestimation of yield at large angles
 - 2.5% of the total number of neutrons
- Underestimation of <E_n> at large angles
- Indicates presence of anisotropy or scission neutrons?

PFN angular distributions

Integral angular distribution of PFN relative to the fission axis

Multiplicity vs. Fragment TKE

For selected fragment pairs

Slope gives directly the change in TXE per emitted neutron

$$TXE = Q_0 - TKE$$

$$\frac{\mathrm{dTXE}}{\mathrm{d}\,\overline{\nu}_T} = -\frac{\mathrm{dTKE}}{\mathrm{d}\,\overline{\nu}_T}$$

Outline

- Motivation & Introduction
- Experimental Details
- Experimental Results
 - PFNs correlation with fragment properties
 - PFNs multiplicity in the resonances
- Summary and conclusions

