### **Fission-fragment studies using** $\gamma$ **-ray spectroscopy**

N. Fotiades

Los Alamos National Laboratory

September 19<sup>th</sup> FIESTA 2017





# INTRODUCTION

Long history of nuclear-structure and fragment-yield studies by identifying  $\gamma$ -rays from fission fragments using modern  $\gamma$ -ray detector arrays.

Neutron-rich fragments are populated from spontaneous fission sources or with light-ion or neutron-induced fission of actinide targets.
 Fragments near stability are populated in fission of much heavier compound nuclei formed in heavy-ion-induced fusion reactions;

*Limitation*: to uniquely identify fragment need additional data if no previous knowledge available (complementary fission fragment technique).

Two examples will be discussed: one about yields and one about structure.





## 1<sup>st</sup> example: Fission-fragment yields in <sup>238</sup>U(n,f)



#### Yields of even-even fragments can be determined



Solid lines: fits; Dashed lines: predictions from JEFF3.1.1 based on a fission model. Contribution from isomers corrected by measuring intensities of delayed  $\gamma$ -rays between beam bursts.





#### In regions where the experimental data is sparse...



...differences between experimental data and model predictions are observed. Predictions are accurate for well-measured systems, e.g. <sup>235</sup>U(n<sub>th</sub>,f), since model parameters are tuned to reproduce these data.

Los Alamos



#### Isotopes we studied as fission fragments in heavy-ioninduced fusion reactions



#### 2<sup>nd</sup> example: Bridging nuclear structure gaps



#### **Intensity ratios of Xe lines in Kr-gated spectra**

<sup>18</sup>O (91MeV) + <sup>208</sup>Pb=> <sup>226</sup>Th\* (CN) => Fragments(by-products) + xn



# **Resulting partial level scheme of <sup>135</sup>Xe**



N. Fotiades et al., Phys. Rev. C 75, 054322, 2007

Los Alamos



## <sup>136</sup>Xe(n,2n)<sup>135</sup>Xe with GEANIE Ge-array at LANSCE





# **Excitation functions for new** <sup>135</sup>**Xe** $\gamma$ **rays**





The GEANIE experiment confirmed independently the assignment of two transitions from the strong sequence to <sup>135</sup>Xe. Assignment of the weak sequence remained tentative.





# Partial level scheme of <sup>134</sup>Xe



<sup>136</sup>Xe + <sup>198</sup>Pt Gammasphere + CHICO

Firm assignment based on delayed-prompt  $\gamma\gamma$  - coincindence spectra. Delayed time window: 45-780ns

A. Vogt et al., Phys. Rev. C 93, 054325, 2016





# Partial level scheme of <sup>135</sup>Xe



Los Alamos

۲

A. Vogt et al., Phys. Rev. C 95, 024316, February 2017



Nuclei near stability complementary techniques:

Deep-inelastic processes in heavy-ion multi-nucleon transfer reactions; *limitations*: relative small cross sections (typically <10mb) and to uniquely identify nucleus need additional data (particle detector) if no previous knowledge available.

Fragments in fission of compound nuclei in heavy-ion fusion reactions; *limitations*: cross sections vary and to uniquely identify nucleus need additional data (complementary fission fragment technique) if no previous knowledge available.

**Especially for stable nuclei:** Heavy-ion induced Coulomb excitation; *limitations*: stable species and excitations connected to ground state by strong matrix elements.





# **CONCLUSIONS**

Prompt  $\gamma$ -ray spectroscopy of fission fragments useful for studying the structure of neutron-rich and nuclei near stability, and for obtaining information on fission-fragment yields.

- For **neutron-rich** fragment studies **spontaneous fission** sources or **light-ion or neutron-induced fission of actinide targets** are usually more appropriate,
- For **nuclei near stability fission of compound nuclei** formed in **heavyion- induced fusion reactions** is usually used to bridge the gaps between neutron-rich and neutron-deficient nuclei.





#### **Collaborators in the experiments**

M. Devlin, R. O. Nelson LANSCE

J. A. Becker, L. A. Bernstein, D. P. McNabb, W. Younes Lawrence Livermore National Laboratory

R. Krucken

TRIUMF

R. M. Clark, P. Fallon, I. Y. Lee, A. O. Macchiavelli

Lawrence Berkeley National Laboratory





## **Requiem for GEANIE at LANSCE**



#### 1998 - 2015

In memoriam: GEANIE (26 "older" Ge detectors). Determined excitation functions and cross sections for prompt  $\gamma$  rays in neutron-induced reactions. Decommissioned in 2015.

**Rests In several Pieces** 





### **Flssion ExperimentS and Theoretical Advances**





### **Flssion ExperimentS and Theoretical Advances**

Suggestion for next workshop? 2020?





### **Flssion ExperimentS and Theoretical Advances**

Suggestion for next workshop? 2020?

## **Fission Experiments and Theoretical Advances**





#### Hope to see everybody in the next

## FIESTA (in New Mexico?)

or

FETA (in Greece?)





#### **Comparison with shell-model predictions** from K. Higashiyama et al., PRC 65, 054317, 2002



#### **Fission Fragment publications**

- 1) High-spin states in <sup>124</sup>Te. N Fotiades, et al., Phys. Rev. C 89 (2014) 017303
- 2) Medium-spin states in <sup>135</sup>Cs. N Fotiades, et al., Phys. Rev. C 88 (2013) 064315
- 3) States built on the 9/2<sup>+</sup> isomers in <sup>91,93</sup>Y. N Fotiades, et al., Eur. Phys. J. A 48 (2012) 117
- 4) States built on the 10<sup>+</sup> isomers in <sup>118,120,122,124</sup>Sn. N Fotiades, *et al.*, Phys. Rev. C 84 (2011) 054310
- 5) High-spin states in <sup>96,97</sup>Nb. N Fotiades, et al., Phys. Rev. C 82 (2010) 044306
- 6) High-spin states in <sup>135</sup>Xe. N Fotiades, et al., Phys. Rev. C 75 (2007) 054322
- 7) First observation of high-spin states in <sup>83</sup>Se N Fotiades, et al., Phys. Rev. C 74 (2006) 034308
- 8) High-spin states in N=50 <sup>85</sup>Br and <sup>87</sup>Rb nuclei. N Fotiades, *et al.*, Phys. Rev. C 71 (2005) 064312
- 9) High-spin states in odd-odd <sup>106,108,110,112</sup>Rh. N Fotiades, et al., Phys. Rev. C 67 (2003) 064304
- 10) Enhanced production of neutron-deficient fission fragments in heavy-ion-induced fusion reactions. N Fotiades, *et al.*, Phys. Rev. C 67 (2003) 034602
- 11) High-spin excitations in <sup>92,93,94,95</sup>Zr. N Fotiades, et al., Phys. Rev. C 65 (2002) 044303
- 12) Observation of v h<sub>11/2</sub> sequences in odd-A~110 nuclei. N Fotiades, *et al.*, Phys. Rev. C 61 (2000) 064326
- 13) Intensity distributions of fragments from fission of the <sup>197</sup>Pb compound nucleus.
  N Fotiades, *et al.*, Physica Scripta Vol. T88 (2000) 127
- 14) High-spin excitations in Ru nuclei near N= 60. N Fotiades, *et al.*, Phys. Rev. C 58 (1998) 1997





#### **Systematics in even-A Sn isotopes**



J. J. Ressler et al., Phys. Rev. C 81, 014301, 2010

Los Alamos

٩

