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OpenMC

OpenMC is an open source Monte Carlo code that has been
developed at MIT by the CRPG group since 2010.

I Developed as part of a PhD thesis in order to resolve
scalability issues on leadership class computing platforms.

I Features were added to truly test parallel algorithm to a point
where results became realistic.

I Serves as an essential research element of the current CPRG
research
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OpenMC is validated against MCNP Criticality
Benchmark Suite

117 configurations with different spectra, materials,
enrichment
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OpenMC can model
a wide variety of
geometries, for

example:

Full-core PWR

TRISO particles

ATR
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What makes OpenMC special is its Python-powered
input generation and post-processing

>>> import openmc

OpenMC is 46,000 lines of F90 and 46,000 lines of
Python
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The OpenMC workflow:

1. Write Python code describing the problem.

2. Use .export to xml() to create XML files.

3. Run OpenMC (using Python or shell). This
creates tallies.out and statepoint.h5
output files.

4. Read tallies.out with a text editor or read
statepoint.h5 with Python.
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OpenMC Features
Public Release

I Modes: Fixed source and
k-eigenvalue

I Geometry: CSG second order,
universes, translations, rotations,
rectangular and hexagonal lattices

I Cross Sections: HDF5-ACE, MG,
WMP-beta

I Physics: neutron transport, S(α, β)
tables, URR probability tables, free
gas scattering, resonance
upscattering, ...

I Acceleration: CMFD

I Parallelism: Distributed/shared
memory via MPI/OpenMP,
replication

I Input: XML or Python API

I Output: HDF5

I Diagnostics: Shannon entropy,
iso-in-lab scattering, particle tracking
files

Private Branches

I URR: Equiprobable surfaces for
temperature interpolation, on-the-fly
URR

I Parallelism: Domain decomposition,
tally servers

I Physics: Resonance upscattering
with WMP, depletion, photon
transport, continuous material
tracking, multigrid time dependence

I Tallies: Functional expansion tallies

I Acceleration: Low order transport

I Input: VERAin converter (CASL)

I UQ: IFP, Clutch, Differential tallies

I Diagnostics: Center-of-mass
variance
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OpenMC can also store the individual tracks of a
neutron history
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OpenMC

I Fission sampling

I Nuclear data representation

I Uncertainty quantification

I Multiphysics coupling
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Eigenvalue Mode

n

n

n

n

fission

fission

capture

fission

n

n

n

n

fission

capture

fission

capture

Batch N Batch N+1
MC eigenvalue
simulations track
successive
generations

Neutrons are born
from fission sites
in the last batch
mimicking the
concept of
generations
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I Sample number of fission sites at each collision

I Scaled by keff to avoid uncontrolled growth or destruction

! Determine e x p e c t e d number o f n e u t r o n s produced
n u t = p % wgt / k e f f ∗ m i c r o x s ( i n u c l i d e ) % n u f i s s i o n / &

m i c r o x s ( i n u c l i d e ) % t o t a l

! Sample number o f n e u t r o n s produced
i f ( prn ( ) > n u t − i n t ( n u t ) ) then

nu = i n t ( n u t )
e l s e

nu = i n t ( n u t ) + 1
end i f
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I Store fission neutrons in bank with sampled direction and
energy

do i = s i z e b a n k + 1 , s i z e b a n k + nu
! Bank s o u r c e n e u t r o n s by c o p y i n g p a r t i c l e data
b a n k a r r a y ( i ) % xyz = p % coord ( 1 ) % xyz

! Sample d e l a y e d group and a n g l e / e n e r g y f o r f i s s i o n r e a c t i o n
c a l l s a m p l e f i s s i o n n e u t r o n ( nuc , nuc % r e a c t i o n s ( i r e a c t i o n ) , &

p % E , b a n k a r r a y ( i ) )

! Set d e l a y e d group on p a r t i c l e too
p % d e l a y e d g r o u p = b a n k a r r a y ( i ) % d e l a y e d g r o u p

! I n c r e m e n t t h e number o f n e u t r o n s born d e l a y e d
i f ( p % d e l a y e d g r o u p > 0) then

nu d ( p % d e l a y e d g r o u p ) = nu d ( p % d e l a y e d g r o u p ) + 1
end i f

end do
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I Sample direction and energy

! Sample c o s i n e o f a n g l e
mu = TWO ∗ prn ( ) − ONE

! Sample a z i m u t h a l a n g l e u n i f o r m l y i n [0 ,2∗ p i )
p h i = TWO∗PI∗prn ( )
s i t e % uvw ( 1 ) = mu
s i t e % uvw ( 2 ) = s q r t (ONE − mu∗mu) ∗ cos ( p h i )
s i t e % uvw ( 3 ) = s q r t (ONE − mu∗mu) ∗ s i n ( p h i )

! Determine t o t a l nu , d e l a y e d nu , and d e l a y e d n e u t r o n f r a c t i o n
n u t = nuc % nu ( E in , EMISSION TOTAL)
nu d = nuc % nu ( E in , EMISSION DELAYED)
b e t a = nu d / n u t

i f ( prn ( ) < b e t a ) then
sample d e l a y e d e n e r g y

e l s e
sample prompt e n e r g y

end i f
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Parallelization

I Development of OpenMC was initially started to address
scalability issues on leadership class computers

I Traditional master/slave communication model was replaced
by a slave-to-slave communication model that maintains
reproducibility
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Ideal

OpenMC scales
linearly up to
∞ processors

(786,000 cores,
3,150,000
threads on

Mira
supercomputer)
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Fixed Source Mode

n

n

n

n

fission

fission

capture

fission
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n

n

n

fission

capture

fission

capture

MC fixed source
simulations track
the full neutron
history from
source to death

Neutrons born
from collision are
banked and bank
is emptied before
starting next
source particle
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Nuclear Data Models

I Most common data model in Monte Carlo codes is the ACE
format (A Compact ENDF format) stored in ASCII or binary
files

I ENDF stores data in multiple formats from resonance models,
log-log interpolation, lin-lin interpolation, ...

I ACE represents cross sections as point-wise data that can be
linearly interpolated in energy and sometimes temperature
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Doppler Broadening

vnσx(vn) =

∫
d3vTP(vT )|~vn − ~vT |σx(|~vn − ~vT |)

I The ACE format is used in NJOY since it can easily be
Doppler broadened numerically

I The quest for fully coupled Monte Carlo simulations where
each zone can have wildly different temperatures has led to
the search of on-the-fly broadening techniques that are
memory and computationally efficient.

I MCNP uses a fitting process where ACE files at multiple
temperatures are fitted at each energy point using a high
order polynomial

I Serpent uses a rejection sampling process where target
velocities at the collision site are sampled randomly and
compared to a ”majorant” cross section
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Multipole Formalism

I One of the approaches proposed
by CRPG was the partial fraction
decomposition of the cross section
which transforms resonance
parameters to poles and residues.

I Hwang (1987) demonstrated that
this conversion was possible and
unique, and more importantly
that the Doppler broadening
operation was analytical.

I The main caveats are that the
nuclides must be represented by
resonance parameters in ENDF
and that this works in the
resolved resonance range only.
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Vector Fitting

I To overcome these limitations,
the idea of vector fitting was
explored.

I Fits any ”signal” into poles and
residues but overfitting
considerations must be taken.

I When done right, vector fitting is
able to reproduce the true
converted poles and residues
starting from point-wise data!

I It also provides a pathway for
dealing with threshold reactions
and fast energy range.
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Doppler Broadening

σ =
1

u2

∑
j

<
[

rj
pj − u

]

σ(u,T ) =
1

u22
√
ξ

∑
j

<
[
irj
√
πW (zj)

]
where

u =
√
E

2
√
ξ =

√
kT

A

zj =
u − pj
2
√
ξ

W (z) = e−z2
(1− erf(−iz))
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Windowed Multipole (WMP) Method

I The number of poles from
conversion or vector fitting is still
too large for efficient use in
analysis. Analytical broadening
requires the evaluation of one
Faddeeva function per pole.

I Windowing process was
introduced where analytical
integration is performed in the
outer window (in red) and a low
order curve fit (in blue inner
window) is used to represent all
far away resonances.

I Windowing process reduces the
number of Faddeeva function
evaluations from 1000’s to 10’s.
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Performance on full core PWR model

I WMP requires 30 times less memory to represent the 70 nuclides in the
resolved resonance range than the 2 ACE libraries used for interpolation.

I WMP accesses its data sequentially reducing large cache misses overhead
of the binary searches.

Run Clock Cycles

WMP 31587
Interpolation 38415

Table: Clock cycles per cross section lookup

Run L1 Misses LL Misses

WMP 554 0.072
Interpolation 736 14.4

Table: Cache misses per cross section lookup
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Sensitivity and UQ

I The pole representation of data also
leads to an interesting avenue for
uncertainty quantification where
resonance parameters covariance data
can be used directly instead of
processing to an energy dependent
form.

I CRPG demonstrated the equivalence
between uncertainty propagation of
resonance parameters and poles at
0K. Pole representation allows
uncertainty to be propagated at any
temperature.

I Future work is looking at embedding
the resonance parameter uncertainty
sampling during the random walk
process.
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Coupling
I Many fields require coupling between different physics often

represented by different codes and different meshes
I In nuclear reactors, fuel pins may require a FEM for heat

transfer while the Monte Carlo method only requires a
material mesh.
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Coupling in OpenMC

I OpenMC proposes using Functional Expansion tallies
(Griesheimer et al, 2006) to facilitate the data transfer from
MC to FEM

I However, to be practical, a method to track neutrons in a
continuously varying field (e.g. temperature, nuclide
concentrations ...) is needed (Brown and Martin, 2003).
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Tracking in Monte Carlo
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CVMT Algorithm

29 / 31



Coupling Results - 3D Single Assembly PWR

I OpenMC/MOOSE
coupling on 3D PWR
assembly

I Zernike polynomials
radially (4th to 6th order)

I Legendre polynomials
axially (4th to 7th order)

I Power is passed to
MOOSE and temperature
and density profile
returned to OpenMC

I 9 integration points in
CVMT

I 1.5 to 3 times speedup
over discretization
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Conclusions

I OpenMC is a flexible open source research tool

I Most applications to date have centered on reactor
simulations with the goal of resolving fully coupled transient
simulations of full reactor cores

I Improvements in nuclear data representation plays a central
role for OpenMC since they provide a natural path for
vectorization and performance improvements
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