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1. Fission Process and Fission Yields

Fission fragments defined at scission A*, Z*, E*
E* is released  : Fission product A, Z

1. Compound Nucleus Formation
2. De-excitation via deformation
3. Saddle point : no-return
4.  scission point : formation of fission fragments 
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Scission point defines the fission fragment properties :
• proton and neutron numbers
• kinetic energy
• excitation energy, angular momentum

—>(neutron evaporation, gamma emission)

1. Fission Process and Fission Yields
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1. Fission Process and Fission Yields

Fission Products are radioactive

Independent yields : before beta decay

Cumulative yields : after beta decay
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1.1 Kinetic properties of fission products

Fission-Fragment kinetic energy defined at scission

Z1 Z2

D

(1) (2) (3)
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Assumptions : 
UCD 
D ~constant
no n evaporation

(4)

(3;4)

1.1 Kinematic properties of fission products

(2;3)
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AL

AH

Light fragment is faster
Fission fragments are slow (typically 1 cm/ns <=>1 A MeV)
They are emitted in 4 π

1.1 Kinematic properties of fission products
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1.2 fission products : population of excited states

Deformed configuration of fragments 
at scission:
particle-hole excitation in the level states
Angular momentum and E*

E*

J (hbar)8

Sn

Scission
Normal 
deformation

FF
n

γ
γγFP
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1.2 fission products : population of excited states

ν(A) and γ(A)  ::  excitation energy is depending on the sorting

From O. Litaize et al., EPJA 51(2015)
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1.2 De-excitation properties of fission fragments

Fission fragments are produced in excited states :
—> they emit gamma rays 
—> Isotopic identification of fission products
—> Identification of the fission products pair
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2. Measurements based on kinematical properties
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Fragment mass identification

Momentum and Mass conservation

Isotropic emission of neutrons
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Product mass identification :

Energy and velocity measurement

neutron multiplicity 

2. Measurements based on kinematical properties
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which resolution ?

Resolution is important for a better counting

FWHM = 0.5 % 

Resolution of 1uma does depends on the mass range :
Around A~100 : 2 adjacent masses are distant by 1%
Around A~50 : 2 adjacent masses are distant by 2 %
Around A~150 : 2 adjacent masses are distant by 0.7%
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which resolution ?

DA/A ~1 :: Resolve A ~ 100
DA/A ~0,5 :: Resolve A~200 FWHM = 1 %
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2.1 Energy and Time-of-Flight based experiments

BEST : 0,6% in COSIFANTUTE, ILL, 1980

n
start1 stop1

stop2E2 E1
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Time-of-Flight measurement

Minimum layer
Fast timing Secondary electron detectors

-HV
+HVB

MICRO-CHANNEL PLATE
MULTI-WIRE PROPORTIONAL COUNTER

FP

e-

Typical resolution 150ps to 200ps; Typical flight path 50ns dT/T ~4‰
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Energy measurement in Ionisation Chambers

-
-

----- --

----- +

+++
+++

+
- HV

+ HV

Number of electrons is large —> good statistical resolution
Despite drift velocity of ions is slow, they may disturb the apparent total charge 
collected on the anode —> Frisch Grid (0V) to isolate the anode from the 
positive current

0 V

Zone of electric field distortion and energy-loss uncertainty that 
decreases significantly the resolution
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Energy measurement in Ionisation Chambers

- HV
+ HV

In axial chamber, all electrons are collected on the anode
Energy-loss collection with 1‰ precision
Electronics (noise and amplification) limits to the percentage limit

0 V

-

- -
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Fission-fragment distributions : experimental challenges

Improvement of technology :
thin layers
SED  : amplification in gaz : large surfaces
Digital electronics : energy-loss profile
Physical limits to the resolution :
Energy-loss straggling in materials (stochastic process)

K. C. Meierbachtol, F.K.E Tovesson et al. LA-UR-15-20101 
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Rigidity-based  experiment

LOHENGRIN spectrometer

E

B

No ToF measurement !



21

Rigidity measurement : Lohengrin

ρ

B

E

ρ

E
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Fission products 
 have a broad q-state distribution
—> energy-loss resolution is limited

3. Atomic Number identification

Energy loss in ionisation chamber
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Energy-loss of ion in material

Energy-loss prop. to ionic charge state
Electron loss and capture cross sections depend on ion energy :

3. Atomic Number identification
σ 

V/V0 

G. I. Bell, PR90(1953)548 

high q

low q
equilibrium qw
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w

ionic charge dispersion diminishes with energy

Z= 50 E = 1MeV/u

Z= 50 E = 10 MeV/u

Z= 50 E = 100 MeV/u
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Atomic Number identification

small detection efficiency —> Difficulty to connect with mass distribution

JH Hamilton Prog. Part. Nucl. Phys. 35

Detection of X-rays 
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4. Isotopic identification from gamma spectroscopy

Fission products may be identified unambiguously from their γ-ray emission 

Difficulties : Large background from beta decay
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Isotopic identification from gamma spectroscopy

γ-γ technique :

EXILL, ILL

A. Bogachev et al. EPJA 34(2007)
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4. Isotopic identification from gamma spectroscopy

— larger number of detectors (γγγ technique)
— external trigger experiment 
(fast ionisation chamber —> thin target) 

— βγ coincidence experiment 
 ( access to cumulative yields)

To fight against background :

A. Bail PhD, 2009
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4. Isotopic identification from gamma spectroscopy

Difficulties to deduce yields : strong fragmentation of the decay path 
==> Difficult measures !!
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Inverse kinematics : need for accelerator complexe

Actinide beam 

heavy fission fragment  

light fission fragment  

Compound nucleus formation 

target  

Increasing fission-fragment velocity for a better resolution 

+ forward focusing for a better detector acceptance
-  time-of-flight resolution decreased 
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Inverse kinematics : nuclear-reaction -induced fission

Different regimes : relativistic energy
Coulomb barrier energy

Relativistic energy : fragmentation or spallation 

large set of compound nuclei
with broad range of excitation energy

Efficient to produce RIB
But difficult to study fission process !



32

Inverse kinematics : Coulomb -induced fission

Relativistic energy : Coulomb excitation 

To select Cb excitation events :
-large-Z target
-Z1+Z2 = Zbeam
-substraction of low-Z target induced fission

Relativistic kinetic energy
Moderate excitation energy !
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Inverse kinematics : Coulomb -induced fission

How to produce actinide beams ? 
Natural U allows to extract 238U, but 235 
Th is possible …
But actinides are very radioactive and it becomes very costly to decontaminate 
an accelerator !! Two steps experiments :

1) production of actinides
2) induce fission and detect fission fragments
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In-flight production of actinides

1) Fragmentation of U beam on target
2) Use of separator

High velocity :
q = Z !!
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Large number of fissioning systems !

In-flight production of actinides
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In-flight fission of  actinides
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Improved Z resolution at high kinetic energy
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Complete distribution of Z yields in many systems

K.-H. Schmidt et al., Nucl. Phys. A 665(2000) 
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Isotopic identification at relativistic energy

Fragment separator to produce 
and select actinides

ALADIN magnet to identify 
both fission fragments

Measure of Bρ, ΔE, ToF

8 m ToF : Absolute challenge to get ToF resolution
Scintillators with 50ps FWHM resolution

A. Ebran, et al.Nucl. Instr. Meth. A 728 (2013)
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Isotopic identification at relativistic energy

Impressive set of data !!
Compete isotopic yields
Very constraining to modelisation !!

E. Pellereau et al. Phys. Rev. C 2017
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Secondary beams 

Fission in inverse kinematics
high resolution in Z,A
Complete identification
Both fission-fragments —> total neutron multiplicity !
Large number of fissioning systems but light systems
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Multi-nucleon transfer induced fission

Very asymmetric reaction :
Nucleon exchange from light to heavy nucleus
Direct reaction

238U+12C : 
Production of almost 10
neutron-rich actinides

Coulomb barrier energy



SPIDER 

VAMOS 

ΔE-E,θ 

Bρ-ToF-ΔE-E 

S. Pullanhiotan et al., NIM 593 (2008) 343 
M. Rejmund et al., NIMA 646 (2011) 184 

EXOGAM 

12
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Multi-nucleon transfer induced fission

Identification of fissioning system Identification of fission product
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C. Rodriguez-Tajes et al.,  
PRC89 (2014) 024614 

Identification of the transfer channels
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238U (12C, 12C) 238U

238U (12C, 10Be) 240Pu
238U (12C, 6He) 244Cm

238U (12C, 11B) 239Np

238U 239Np

240Pu 244Cm• Isotopic identification 
• Reconstruction of binary reaction
• Ex reconstruction

238U beam
6.14 MeV/u

12C target

target-like
recoil

fission 
fragments

Identification of the transfer channels
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Identification of fission products
experimental set-up at VAMOS


21 Si 
detectors 

ionization chamber 

drift chamber 

drift chamber 
SeD 

SPIDER 

Aside 

Eres 

X,Y 

X,Y 
ToF 

dE 

E, dE,  
recoil angle 

20 deg 

at 20 deg 

• v = D/TOF 

238U beam EXOGAM 

• Bρ=A/qv   

• ΔE = Z2/V2 

• E = 1/2AV2 
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∆Z/Z ≈ 1.5 ·10-2 

Improved atomic number resolution
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A/q = Bρ/(βγ) 
A = E/(γ-1) 

Mass resolution through magnetic rigidity resolution

dq/q ~ 1.5 %
dA/A ~0.6 %



Results: Isotopic Fission Yields
238U

Ex ~ 7.4 MeV

244Cm

Ex ~ 23 MeV

250Cf

Ex = 46 MeV

Ex ~ 7.5 MeV

239Np

Ex ~ 10.7 MeV

240Pu

Z

N

23
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Mass resolution through magnetic rigidity resolution

New data : new type of observables : 
Charge polarisation 
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Mass resolution through magnetic rigidity resolution

New techniques allow for improved resolution for the identification of 
fission fragments 

In addition they allow for : 
2D-map of the fission fragments
study the evolution with excitation energy
improving the number of fissioning actinides due to nuclear reactions
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Evolution of mass distribution with Excitation energy

From transfer kinematics
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Evolution of charge polarisation with Excitation energy

Only heavy fragments evaporate neutrons  !! 
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Multi-nucleon reaction used in direct kinematics

K. Nishio,, JAEA Tandem
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Multi-nucleon reaction used in direct kinematics

R. Léguillon et al., PLB 761(2016) 125
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7. Fission Yields : systematic uncertainties and errors

Fission yields : number of fragment per fission event 

isotopic identification
gamma spectroscopy, 
energy-loss, energy and time-of flight

mass identification
energy, time-of-flight measurements

atomic number identification
energy-loss, X-ray

2 fission fragments/ fission
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7. Fission Yields : systematic uncertainties and errors

Relative yields : beam intensity, target thickness, .. are not key parameters 

Detection relative efficiency : 
——-from Z~ 30 to Z~60, energy-loss varies with a factor 4
—— target release efficiency : depends on Z, and angle

Need a precise simulation of the detection set-up 
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7. Fission Yields : systematic uncertainties and errors

Uncertainty on level scheme:
isomeric states ; fragmentation of the decay path
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7. Fission Yields : systematic uncertainties and errors

full phase space measurement :

— correction for angular anisotropy
— correction for q-state distribution

AL

AHDetection system

C. Amouroux PhD
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7. Fission Yields : systematic uncertainties and errors

In case of magnetic spectrometer : correction for q-state distribution

Lohengrin : estimated VAMOS : (large acceptance)
 measured



61

7. Fission Yields : systematic uncertainties and errors

Target composition  : 
Typical actinide target contains several other actinides 

235U: 93.27% (234U: 1.05%, 238U: 5.68%) 

239Pu: 98.41 (40)%, 240Pu: 1.58(40)% 

Need a carefull 
analysis !!
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8. Conclusions

Measurement of fission yields is challenging

Standard techniques based on 2E-2v measurements pursue challenging
programmes in mass distributions and neutron multiplicities

gamma spectroscopy is a powerful tool for isotopic identification and fission 
pair identification

New innovative techniques based on nuclear-induced fission using 
spectrometers allow for new-generation data on a wide range 
(and new range) of actinides 

This ensemble of data is challenging and constraining for the development 
of nuclear fission models 


