

Experimental Description of Fission Fragment yields

- 1. Fission process and Fission Yields
 - 1. Kinetic properties of Fission Fragment
 - 2. Fission Fragment population of excited states
- 2. Measurement based on kinematic properties
 - 1. Energy and time-of-flight based experiments
 - 2. Rigidity-based experiments
- 3. Atomic number identification
- 4. Gamma-spectroscopy techniques
- 5. Inverse kinematics
 - 5.1 SOFIA experiment
 - 5.2 Multi-nucleon induced fission in inverse kinematics
- 6. Surrogate reactions
- 7. Fission yields, systematic uncertainties and errors
- 8. Conclusions

1. Fission Process and Fission Yields

- 1. Compound Nucleus Formation
- 2. De-excitation via deformation
- 3. Saddle point : no-return
- 4. scission point : formation of fission fragments

Fission **fragments** defined at scission A*, Z*, E* E* is released: Fission **product** A, Z

1. Fission Process and Fission Yields

Scission point defines the fission fragment properties :

- proton and neutron numbers
- kinetic energy
- excitation energy, angular momentum
 - —>(neutron evaporation, gamma emission)

1. Fission Process and Fission Yields

Fission Products are radioactive

Independent yields : **before** beta decay

Cumulative yields : **after** beta decay

1.1 Kinetic properties of fission products

Fission-Fragment kinetic energy defined at scission

$$TKE = 1.44 \frac{Z_1 Z_2}{D}$$
 $D = r_0 (A_1^{*1/3} (1 + \frac{2}{3} \beta_1) + A_2^{*1/3} (1 + \frac{2}{3} \beta_2)) + d,$

(1)
$$TKE = 1.44 \frac{Z_1 Z_2}{D} \qquad E_1 = \frac{A_2}{A_1} E_2$$

$$E_1 = \frac{A_2}{A_1} E_2$$

$$E_1 + E_2 = TKE$$

1.1 Kinematic properties of fission products

Assumptions: UCD

D ~constant no n evaporation

$$\frac{Z_1}{A_1} = \frac{Z_2}{A_2} = \frac{Z_f}{A_f} = \alpha_f$$

$$E_2 \frac{A_1 + A_2}{A_1} = TKE$$

$$E_2 \frac{Z_1 + Z_2}{Z_1} = TKE$$

1.1 Kinematic properties of fission products

$$= \frac{1.44}{D} \frac{Z_1}{Z_1 + Z_2} Z_1 Z_2$$

$$E_1 = \frac{1.44}{D} \frac{Z_2}{Z_1 + Z_2} Z_1 Z_2$$

Light fragment is **faster** Fission fragments are slow (typically 1 cm/ns <=>1 A MeV) They are emitted in 4 π

1.2 fission products: population of excited states

Deformed configuration of fragments at scission:

particle-hole excitation in the level states Angular momentum and E*

1.2 fission products: population of excited states

v(A) and $\gamma(A)$:: excitation energy is depending on the sorting

From O. Litaize et al., EPJA 51(2015)

1.2 De-excitation properties of fission fragments

2. Measurements based on kinematical properties

Fragment mass identification

$$A_1^*\beta_1^*c = A_2^*\beta_2^*c$$

$$A_1^* + A_2^* = A_f$$

$$<\beta_{1,2}^*>=<\beta_{1,2}>$$

$$A_1^* = A_f \frac{\beta_2}{\beta_1 + \beta_2}$$

Momentum and Mass conservation

Isotropic emission of neutrons

2. Measurements based on kinematical properties

Product mass identification:

$$E_{1,2} = \frac{1}{2} A_{1,2} m_0 \beta_{1,2} c^2$$

Energy and velocity measurement

$$A_{1,2} = \frac{2E_{1,2}}{2A_{1,2}m_0\beta_{1,2}c^2}$$

$$v_{1,2} = A_{1,2} - A_{1,2}^*$$

neutron multiplicity

which resolution?

Resolution of 1uma does depends on the mass range:

Around A~100: 2 adjacent masses are distant by 1%

Around A~50: 2 adjacent masses are distant by 2%

Around A~150: 2 adjacent masses are distant by 0.7%

FWHM = 0.5 %

Resolution is important for a better counting

which resolution?

DA/A ~1 :: Resolve A ~ 100

DA/A ~0,5 :: Resolve A~200

FWHM = 1 %

2.1 Energy and Time-of-Flight based experiments

BEST: 0,6% in COSIFANTUTE, ILL, 1980

Time-of-Flight measurement

MICRO-CHANNEL PLATE

MULTI-WIRE PROPORTIONAL COUNTER

Typical resolution 150ps to 200ps; Typical flight path 50ns dT/T ~4‰

Energy measurement in Ionisation Chambers

Number of electrons is large —> good statistical resolution

Despite drift velocity of ions is slow, they may disturb the apparent total charge collected on the anode —> Frisch Grid (0V) to isolate the anode from the positive current

Zone of electric field distortion and energy-loss uncertainty that decreases significantly the resolution

Energy measurement in Ionisation Chambers

In axial chamber, all electrons are collected on the anode Energy-loss collection with 1% precision Electronics (noise and amplification) limits to the percentage limit

Fission-fragment distributions : experimental challenges

Improvement of technology:

thin layers

SED: amplification in gaz: large surfaces

Digital electronics: energy-loss profile

Physical limits to the resolution:

Energy-loss straggling in materials (stochastic process)

K. C. Meierbachtol, F.K.E Tovesson et al. LA-UR-15-20101

Rigidity-based experiment

LOHENGRIN spectrometer

No ToF measurement!

Rigidity measurement: Lohengrin

$$\frac{A}{q} \frac{Av^2}{q} = r_m^2 B^2$$

$$\frac{E_k}{q} = \frac{1}{2} r_{el} E$$

$$\frac{\partial A}{A} \sim 0.01 \%$$

$$\frac{\partial A}{\partial x^{1/2}} = \frac{\partial A}{\partial x^{1/2}} =$$

3. Atomic Number identification

Energy loss in ionisation chamber

$$-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c \left(\rho \frac{Z}{A} \frac{q^2}{\beta^2} \right) \left[\ln \left(\frac{2m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

Fission products
have a broad q-state distribution
—> energy-loss resolution is limited

3. Atomic Number identification

Energy-loss of ion in material

Energy-loss prop. to ionic charge state Electron loss and capture cross sections depend on ion energy:

ionic charge dispersion diminishes with energy

Atomic Number identification

Detection of X-rays

small detection efficiency —> Difficulty to connect with mass distribution

4. Isotopic identification from gamma spectroscopy

Fission products may be identified unambiguously from their γ-ray emission Difficulties : Large background from beta decay

Isotopic identification from gamma spectroscopy

γ-γ technique:

EXILL, ILL

4. Isotopic identification from gamma spectroscopy

To fight against background:

- larger number of detectors (γγγ technique)
- external trigger experiment[fast ionisation chamber —> thin target)

 – βγ coincidence experiment (access to cumulative yields)

4. Isotopic identification from gamma spectroscopy

Difficulties to deduce yields: strong fragmentation of the decay path ==> Difficult measures!!

Inverse kinematics: need for accelerator complexe

Increasing fission-fragment velocity for a better resolution

- + forward focusing for a better detector acceptance
- time-of-flight resolution decreased

Inverse kinematics: nuclear-reaction-induced fission

Different regimes : relativistic energy Coulomb barrier energy

Relativistic energy: fragmentation or spallation

Inverse kinematics: Coulomb-induced fission

Relativistic energy: Coulomb excitation

To select Cb excitation events:

- -large-Z target
- -Z1+Z2 = Zbeam
- -substraction of low-Z target induced fission

Relativistic kinetic energy Moderate excitation energy!

Inverse kinematics: Coulomb-induced fission

How to produce actinide beams?

Natural U allows to extract 238U, but 235

Th is possible ...

But actinides are very radioactive and it becomes very costly to decontaminate

an accelerator!!

Two steps experiments:

- 1) production of actinides
- 2) induce fission and detect fission fragments

In-flight production of actinides

- 1) Fragmentation of U beam on target
- 2) Use of separator

In-flight production of actinides

In-flight fission of actinides

Improved Z resolution at high kinetic energy

$$\frac{\partial Z}{Z} \sim 0.2\%$$

Complete distribution of Z yields in many systems

K.-H. Schmidt et al., Nucl. Phys. A 665(2000)

Isotopic identification at relativistic energy

Fragment separator to produce and select actinides

ALADIN magnet to identify both fission fragments

Measure of Bp, Δ E, ToF

$$\frac{\partial A}{A} \sim 0.5 \%$$

8 m ToF: Absolute challenge to get ToF resolution Scintillators with 50ps FWHM resolution

A. Ebran, et al. Nucl. Instr. Meth. A 728 (2013)

Isotopic identification at relativistic energy

Impressive set of data !!

Compete isotopic yields

Very constraining to modelisation !

Secondary beams

Fission in inverse kinematics
high resolution in Z,A
Complete identification
Both fission-fragments —> total neutron multiplicity!
Large number of fissioning systems but light systems

Multi-nucleon transfer induced fission

Coulomb barrier energy

Very asymmetric reaction:
Nucleon exchange from light to heavy nucleus
Direct reaction

238U+12C:
Production of almost 10
neutron-rich actinides

Multi-nucleon transfer induced fission

Identification of the transfer channels

C. Rodriguez-Tajes et al., PRC89 (2014) 024614

Identification of the transfer channels

²³⁸U (¹²C, ¹²C) ²³⁸U ²³⁸U (¹²C, ¹¹B) ²³⁹Np ²³⁸U (¹²C, ¹⁰Be) ²⁴⁰Pu ²³⁸U (¹²C, ⁶He) ²⁴⁴Cm

- Isotopic identification
- Reconstruction of binary reaction
- E_x reconstruction

Identification of fission products

ionization chamber

Βρ=A/qv

• v = D/TOF

• $\Delta E = Z^2/V^2$

• $E = 1/2AV^2$

Improved atomic number resolution

 $\Delta Z/Z \approx 1.5 \cdot 10^{-2}$

Mass resolution through magnetic rigidity resolution

Results: Isotopic Fission Yields

Mass resolution through magnetic rigidity resolution

New data : new type of observables : Charge polarisation

Mass resolution through magnetic rigidity resolution

New techniques allow for improved resolution for the identification of fission fragments

In addition they allow for:

2D-map of the fission fragments
study the evolution with excitation energy
improving the number of fissioning actinides due to nuclear reactions

Evolution of mass distribution with Excitation energy

From transfer kinematics

Evolution of charge polarisation with Excitation energy

Only heavy fragments evaporate neutrons!!

Multi-nucleon reaction used in direct kinematics

K. Nishio,, JAEA Tandem

Multi-nucleon reaction used in direct kinematics

Fission yields: number of fragment per fission event

$$\sum Y(Z,A)=200$$

$$Y(Z,A) = \frac{\partial N_f}{\partial Z \partial A}$$

$$Y(A) = \sum_{A} Y(Z, A) = \frac{\partial N_f}{\partial A}$$

$$Y(Z) = \sum_{A} Y(Z,A) = \frac{\partial N_f}{\partial Z}$$
 atomic number identification energy-loss, X-ray

2 fission fragments/ fission

isotopic identification gamma spectroscopy, energy-loss, energy and time-of flight

 $Y(A) = \sum Y(Z, A) = \frac{\sigma N_f}{\partial A}$ mass identification energy, time-of-flight measurements

Relative yields: beam intensity, target thickness, .. are not key parameters

Detection relative efficiency:

- ——-from Z~ 30 to Z~60, energy-loss varies with a factor 4
- —— target release efficiency: depends on Z, and angle

Need a precise simulation of the detection set-up

785.5

(0.2)

4239.8

Uncertainty on level scheme: isomeric states; fragmentation of the decay path

$$Y(Z,A) = \frac{\partial N_f}{\partial Z \partial A} \frac{1}{\xi(Z,A,E)} \int dE \int d\theta$$

Detection system

full phase space measurement:

- correction for angular anisotropy
- correction for q-state distribution

In case of magnetic spectrometer: correction for q-state distribution

$$Y(Z,A) = \sum_{q} \frac{\partial N_f}{\partial Z \partial A}(q) \frac{1}{\xi(Z,A,E,q)} \int dE \int d\theta$$

Lohengrin: estimated

VAMOS : (large acceptance) measured

Target composition: Typical actinide target contains several other actinides

235U: 93.27% (234U: 1.05%, 238U: 5.68%)

239Pu: 98.41 (40)%, 240Pu: 1.58(40)%

Need a carefull analysis!!

8. Conclusions

Measurement of fission yields is challenging

Standard techniques based on 2E-2v measurements pursue challenging programmes in mass distributions and neutron multiplicities

gamma spectroscopy is a powerful tool for isotopic identification and fission pair identification

New innovative techniques based on nuclear-induced fission using spectrometers allow for new-generation data on a wide range (and new range) of actinides

This ensemble of data is challenging and constraining for the development of nuclear fission models