Neutron multiplicities in the $^{236}U(\gamma, f)$ reaction

SOFIA: Studies On Flssion with Aladin

FIESTA 2017 Workshop

Santa Fe, September 17-22, 2017

L. Grente, J. Taïeb, A. Chatillon for the R³B-SOFIA collaboration.

- CEA DAM/DIF, France
- IPNO, France
- CENBG, France
- GANIL, France

- GSI, Germany
- University of Santiago de Compostella, Spain
- University of Vigo, Spain
- Technical University of Chalmers, Sweden

Taking advantage of the specificity of the SOFIA set-up in which **nuclear charge** and **mass** of both fission fragments are measured in coincidence

- indirect measurement of the total mean neutron multiplicity
- from numerical treatment it is possible to extract:
 - \Rightarrow Mass yields of the primary fragments
 - \Rightarrow Neutron multiplicity as function of the mass number of the primary fragments
 - \Rightarrow done by Lucie GRENTE during her post-doc

(日) (同) (三) (三)

- $\nu_{tot} = A_{CN} A_{FF1} A_{FF2}$
- Deformation energy converted into excitation energy

•
$$\nu_{tot} = A_{CN} - A_{FF1} - A_{FF2}$$

- Deformation energy converted into excitation energy
- Q-value is higher in case of even-even splitting due to the proton pairing

 $\begin{array}{c|c} \text{SOFIA} & \langle \nu_{tot} \rangle & \langle \nu \rangle (A) & \text{Conclusion} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} \\ \end{array}$ Comparison of $\langle \nu_{tot} \rangle_{SOFIA}$ with evaluations and existing data

• SOFIA at $\langle \mathsf{E}^* \rangle{=}14.1~\text{MeV}$

 $\Rightarrow \langle
u_{tot}
angle_{\it SOFIA} =$ 3.81 compared to $\langle
u_{tot}
angle_{\it th} =$ 2.45

 \Rightarrow SOFIA data 4% above JEFF 3.3: question under discussion

5

Cea

Iarge uncertainties

 \Rightarrow difficult experiment due to the drop of fission cross section and neutron flux

• increase of the multiplicity with E* for the heavy fission fragments

SOFIA OO		$\langle \nu_{tot} \rangle$ 00	⟨ν⟩(A)οο●οοοοοοο	Conclusion O
From	SOFIA: data fo	r ²³⁶ U(γ ,f) fo	or 1 st -chance only	CRATA REPORTED A LONG TOP

 $\bullet\,$ High statistics data with a good mass resolution for $^{234,235,236}{\rm U}(\gamma,{\rm f})$

• Removal of the contribution of 2^{nd} and 3^{rd} fission chances

8

- High statistics data with a good mass resolution for 234,235,236 U(γ ,f)
- cea

- Removal of the contribution of 2^{nd} and 3^{rd} fission chances
- From GEF : evaluation of the different fission chances contribution

0

0 2 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

イロト イ伺ト イヨト イヨト

Excitation energy [MeV]

• High statistics data with a good mass resolution for 234,235,236 U(γ ,f)

- Removal of the contribution of 2^{nd} and 3^{rd} fission chances
- From GEF : evaluation of the different fission chances contribution

80 Each square represents the correlated mass yield $Y(A_1, A_2)$ ۰

For each fragment of mass A_1 : probabilities to be produced with fragments of mass A_2

100

For each of these partners of mass A_2 : probabilities to be produced with fragments of mass A_1

120

140

160

- Coupled system in mass which carries out the information on the neutron multiplicity ۵ $\Rightarrow A_i = 236 - A_j - \nu_{tot(i,j)}$
 - \Rightarrow coupled system in neutron multiplicity

80

10⁻²

• $\mathsf{P}^{M}(\nu)$: probability for a primary fragment of mass M, to emit ν neutrons

Measured correlated mass yield Y(A₁,A₂)

$$Y(A_1, A_2) = \sum_{\nu_1=0}^{236-A_1-A_2} P^{M_1}(\nu_1) P^{M_2}(\nu_2) X(M_1)$$
• hyp 1: $P^{M_i}(\nu_i)$ gaussian
 $\Rightarrow 3$ sets of independant parameters
 $\langle \nu \rangle(M), \sigma(M), X(M_i)$
• hyp 2: $\langle \nu \rangle(M), \sigma(M)$ Fourier series
 \Rightarrow cut in the high frequency domain

80

100

120

140

• χ^2 minimization using MIGRAD \Rightarrow from the CERN library MINUIT

¹⁶⁰ A₂

- subtraction of higher chances on post neutron emission mass yields
- minimization procedure gives the primary fission fragments mass yields
- important results for further comparison with models
 - \Rightarrow first fission chance only
 - \Rightarrow fission fragment yields before neutron emission \neg < \square > \neg < \blacksquare > \neg < \blacksquare > \neg <

 $\begin{array}{c|c} \text{SOFIA} & \langle \nu_{tot} \rangle & \langle \nu \rangle (A) & \text{Conclusion} \\ \hline \text{Comparison of pre neutron emission mass yields with thermal data} \end{array}$

- at symmetry: higher valley
 - \Rightarrow due to the higher excitation energy (($\langle E^* \rangle_{\it SOFIA,1^{st} chance}{=}12.4$ MeV)
- at asymmetry: same structure of the primary fragment mass yields
 - \Rightarrow shift of one mass

H. W. Schmitt et al., Phys. Rev. 141, 1146 (1966) on a Co-

cea

direct result from the minimization procedure

- in the light fragments, similar $\nu(M)$ at two different excitation energies ۰
- similar shoulders at M \sim 95 and M \sim 140 ۵
- from SOFIA data: $\langle \nu \rangle_{LIGHT} = 1.40, \langle \nu \rangle_{HEAVY} = 2.26$ $\langle E^* \rangle_{1st chance} = 12.4 \text{ MeV}$ ۰
- from Nishio et al.: $\langle \nu \rangle_{LIGHT} = 1.42, \langle \nu \rangle_{HEAVY} = 1.01$ ۲
- thermal neutrons
- additional excitation energy is going in the heavy fission fragment ۲

- \bullet fission described with a constant temperature level density: T \propto $A^{-2/3}$
- at scission, intrinsic excitation energy transferred from the fragment with the higher temperature (light) to the fragment with the lower temperature (heavy)

SOFIA OO	(<i>v_{tot}</i>) 00	(ν)(A)000000000	Conclusion					
 e 2 experiments with different fissioning nuclei studied ⇒ Isotopic identification of fissioning nucleus and both fission fragments ⇒ High statistics data taken for ^{234,235,236}U ⇒ Electromagnetic induced fission ⇒ ⟨E*⟩_{SOFIA}=14.1 MeV and ⟨E*⟩_{SOFIA,1st chance}=12.4 MeV Thanks to the precision reached: results on prompt neutron multiplicity ⇒ Average total prompt neutron multiplicity ⇒ Prompt neutron multiplicity per mass of primary fragment 								
Prompt neutron multiplicity in 236 U(γ ,f) studied with SOFIA								
20 6 5.5 5 4.5 4.5 3.5 30	higher v at symmetry even-odd effect $(v_{tot}) = 3.81$ 32 34 36 38 40 42 44 46 Zi inti trament	v(M) measured for ²³⁵ U(n _{th} .f) compared with SC V(M) measured for ²³⁵ U(n _{th} .f) compared with SC Nishio <i>et al.</i> (2010) Boldema <i>et al.</i> (1971) Boldema <i>et al.</i> (1971) 1.5 0.5 90 100 110 120 130	DFIA data					
	Light fragment	Fission-fragments mass	1.10 1.50					

SOFIA	$\langle \nu_{tot} \rangle$	$\langle \nu \rangle$ (A)	Conclusion
00	00	000000000	0

- Mass resolution $\Delta A = 0.55$ to 0.8 mass unit FWHM
- Charge resolution $\Delta Z = 0.31$ to 034 charge unit FWHM
- Fission fragments after prompt neutrons evaporation and before β^- decay

FIESTA 2017

-27

- \Rightarrow Super-Long (SL) fission mode: deformed configuration at scission
- \Rightarrow evaporation of neutrons by the fragments

(日) (同) (三) (三)

<ロ> <四> <四> <日> <日> <日</p>