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•  In THEORY:  

             Formulation of a local extension of the Density Functional Theory (DFT), in the spirit of  
the Local Density Approximation (LDA) formulation of DFT due to Kohn and Sham, to superfluid 
time-dependent phenomena, the Superfluid Local Density Approximation (SLDA). 
 
                 Validation and verification of (TD)SLDA against a large set of theoretical and  
experimental data for systems of strongly interacting fermions. 
 
•  In HIGH PERFOMANCE COMPUTING:  
 
                 Emergence of very powerful computational resources, non-trivial numerical 
implementation of TDSLDA, advanced capabilities of leadership class computers, in particular tens 
of thousands of GPUs. 
 
      SLDA and TDSLDA are problems of extreme computational complexity, requiring the solution 
of 10,000s … 1,000,000s coupled complex non-linear time-dependent 3D partial differential 
equations. 

Several recent developments have radically changed our prospects  
of attaining a microscopic description of nuclear fission. 



From Lectures given by Gönnenwein at LANL Fiesta School, 2014 

1 zs = 10−21 sec. = 300 fm/c

From	the	outer	saddle	to	the	scission	the		
dynamics	is	rela2vely	fast,	likely		
non-adiaba2c	and	in	this	region	the		
fission	fragments	are	formed	and	their		
proper2es	are	defined.	

The	shape	of	the	PES	is	governed	
mostly	by	the	compe99on	between	
the	surface	and	the	Coulomb	energies.	



Barranco, Bertsch, Broglia, and Vigezzi 
Nucl. Phys. A512, 253 (1990) 

•  While a nucleus elongates its Fermi surface  
becomes oblate and its sphericity must be restored 
    Hill and Wheeler, PRC, 89, 1102 (1953) 
    Bertsch, PLB, 95, 157 (1980) 
 
•  Each single-particle level is double degenerate 
(Kramers’ degeneracy) and at each level crossing two 
nucleons must jump simultaneously! 

                            (m,-m)     =>      (m’,-m’) 
                   “Cooper pair” =>  “Cooper pair” 
 
•  Pairing interaction/superfluidity is the most  
effective mechanism at performing shape changes. 

Potential energy surface is a bit more complicated than a liquid drop model 
would suggest!   
                              How nuclei change their shape at a microscopic level? 
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Bertsch and Bulgac, Phys. Rev. Lett. 79, 3539 (1997) 

Let us consider an axially symmetric nucleus, with 
Oz the axis of symmetry and evaluate semiclassically 
the  angular momentum distribution 

In TDHF or TDHF with frozen occupation probabilities P(lz) is conserved and single-particle states  
with |mmax| ≈ O(kFr0A1/3), which should not be occupied in the fission fragments, retain their initial  
occupation probability.   
The initial spherical Fermi momentum distribution acquires an ellipsoidal prolate 
shape in the final fission fragments. 
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Fission	fragments	have	smaller	waists	
than	their	“mother”	and	therefore		
smaller	|mmax|	.	

Dashed	line	–	semi-classical	
Histogram	–	shell	model	



One more problem! 
Initial	nucleus:	20	posi2ve	+	12	nega2ve	parity	sp	orbitals		
Final	nuclei:							16	posi2ve	+	16	nega2ve	parity	sp	orbitals																																				

Occupied sp orbitals m-quantum  
numbers in initial and final configurations Potential energy curve for 240Pu with SLy4 

Ryssens, et al., Phys. Rev C 92, 064318 (2015)  



The	Main	Theore2cal	Tool	

1990	 2012	

But not everyone is normal!  Hence, a new local extension of DFT to superfluid systems and time-dependent  
phenomena was developed. 
Review: A. Bulgac, Time-Dependent Density Functional Theory and Real-Time Dynamics of Fermi Superfluids, Ann. 
Rev. Nucl. Part. Sci. 63, 97 (2013) 

DFT	has	been	developed	and	used	mainly	to	describe	normal	(non-superfluid)	electron	systems.		
DFT	provides	the	framework,	the	equivalent	of	the	Schrödinger	equa2on.	(We	might	not	have	the	“exact	poten2al”	yet)	
This	theory	which	is	more	than	50	years	old:		DFT	-	Kohn	and	Hohenberg,	1964			and		LDA	-	Kohn	and	Sham,	1965	

MATHEMATICAL	THEOREM:		
									There	exist	an	universal	density	func>onal	of	par>cle	density.	



DFT	is	not	a	glorified	meanfield	as	some	say!	
																																	Let	us	consider	the	Schrödinger	equa2on	for	example:		
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HΨ0(1,2,...N ) = E0Ψ0(1,2,...N )
We	know	this	is	the	correct	framework	to	describe	quantum	phenomena,	even	
though	we	have	only	an	approximate	idea	about	interac2ons	,	we	do	not	know	the	
exact	NN	and	NNN	poten2als	and	use	phenomenology.		
	
	
	
	
We	also	know	that	DFT	is	mathema2cally	equivalent	to	the	Schrödinger	equa2on,	
even	though	we	cannot	always	prac2cally	show	that,	and	we,	as	a	rule,	we	do	not	
know	the	exact	func2onal	and	use	use	phenomenology	too.	
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TD Superfluid LDA equations (TDSLDA) 
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r ,t( )+ µ -ĥ*↑↓
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•  The system is placed on a large 3D spatial lattice (adequate representation of continuum) 
•  Derivatives are computed with FFTW (this insures machine accuracy) and is very fast 
•  Fully self-consistent treatment with fundamental symmetries respected (isospin,  
      gauge, Galilean, rotation, translation, parity) 
•  Adams-Bashforth-Milne fifth order predictor-corrector-modifier integrator 
       which is effectively a sixth order method 
•  No symmetry restrictions for the solutions 
•  Number of PDEs is of the order of the number of spatial lattice points  
   – from 10,000s to 1-2,000,000 
 

•  SLDA/TDSLDA  (DFT) is formally by construction like meanfield HFB/BdG 
•  The code was implemented on Jaguar, Titan, Piz Daint, Tsubame3.0,  Franklin, Hopper, Edison, Hyak, Athena 
•  Initially Fortran 90, 95, 2003 …, presently C, CUDA, and obviously MPI, threads, etc. 
•  Extremely efficient I/O for Check-Point Restart 
•  For more details (though not latest ones) about the method see INT talk on October 7, 2013: 
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While	in	this	presenta>on	I	have	concentrated	on	a	single	issue,	it	is	important	to		
summarize	that	so	far	TDSLDA	has	lead	to	many	qualita>ve	new	developments:	
•  The	first	microscopic	descrip2on	of	structure	and	crea2on,	and	decay	of		
quan2zed	vor2ces		in	Fermi	superfluid		
•  The	first	microscopic	descrip2on	of	the	incipient	phases	of	quantum	turbulence		
in	Fermi	superfluids	predicted	in	1954	by	Feynman,	crossing	and	recombina2on		
of	vor2ces	
•  The	correct	iden2fica2on	of	the	crea2on	of	domain	walls,	quan2zed	vor2ces	and		
vortex	rings,	their	dynamics	and	decay		and	of	the	quantum	shock	waves	in	exps.	
•  Described	the	microscopic	structure	of	quan2zed	vor2ces	in	neutron	ma\er	
•  Described	microscopically	the	interac2on	of	quan2zed	vor2ces	with	nuclei	in		
neutron	star	crust	
•  Described	microscopically	the	Coulomb	excita2on	of	nuclei	with	rela2vis2c	nuclei	
•  Described	induced	nuclear	fission	and	revealed	unexpected	qualita2ve	aspects	
•  Has	been	applied	to	collisions	of	heavy	superfluid	nuclei	and	revealed	new		
qualita2ve	phenomena			



Cray XK7, ranked at peak ≈ 27 Petaflops  (Peta – 1015) 
 
On Titan there are  18,688 GPUs  which provide 24.48 Petaflops !!!  
                        and 299,008 CPUs which provide only 2.94 Petaflops.  
 
A single GPU on Titan performs the same amount of FLOPs as approximately 134 CPUs. 

The Main Computational Tool 



 

EDF :                             SLy4 and currently SeaLL1 and SkM*mod

Pairing coupling:           geff
!r( ) = g 1−η ρ !r( )

ρ0

⎛
⎝⎜

⎞
⎠⎟

,   respects isospin symmetry, very accurate

Simulation box:             currently 60 × 302  fm3

Momentum cutoff:         pc  =
"π
Δx

≈ 500 MeV ⋅ fm in each Cartesian direction, cubic momentum space

                                      of the same order as in χ-perturbation EFT
Extremely efficient use of FFT to calculate derivatives with machine precision (10−15 )
Adams-Bashforth-Milne O(Δt6 ) time integration method
                with only two evaluations of the rhs of the equations per time-step
Time-step:                         = 0.03 fm/c
Number of time steps:      ≈  up to 120,000, approximately 2.5 time-steps per sec.
Number of PDEs:            ≈ 2(for n and p)× 2 × NxNyNz (for En > 0) = 442,368

Number of DoF                = (4NxNyNz )
2  = (4 × 242 × 48)2 ≈1.2 ×1010  or approximately 0.2 TB

Number of GPUs:            ≈1,728+2 (balance between speed and cost) thus 256 PDEs per GPU
Wall time:                        ≈  4-12 hours
OLCF Titan  - Cray XK7
ETH   - Piz Daint 



Induced Fission of 240Pu 



Induced fission of 240Pu 

Neutron/proton densities (left and top/bottom)  
Neutron/proton pairing gaps (right and top/bottom) 

Bulgac, Magierski, Roche, and  Stetcu, Phys. Rev. Lett. 116, 122504 (2016) 



1 zs = 10−21 sec. = 300 fm/c



1 zs = 10−21 sec. = 300 fm/c
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2D classical analog model of the Drude  
model for electron conduction in metals. 

Note that kinetic energy is not dissipated and in both cases and  the “electrons”  
arrive at the bottom with the same speed but at different times! 

On the left  side there is no “ion lattice” present, only 
electrons in an “uniform electric field.” 
 
On the right side the electrons, again in the presence 
of an “uniform electric field,”  collide elastically with  
the “ions.”   

The most surprising finding was that the saddle-to-scission time was significantly longer 
than expected from any previous treatments.               Why? 

One	cause:	all	collec2ve	degrees	of		
freedom	present.	

Another	reason:		
	fluctua2ng	pairing	field.	



How	important	pairing	is?	

Normal	pairing	strength	
Saddle-to-scission	14,000	fm/c	

Enhanced	pairing	strength	
Saddle-to-scission	1,400	fm/c	!!!	



SeaLL1 - a qualitatively new nuclear energy density functional (not fully optimized yet).
• Number of parameters = 7 (as compared to 14 or more in typical nuclear DFT approaches)
     2 (isoscalar:ρ0,E / A) + 2 (isovector: S, L) + 1 (surface tension) + 1 (spin-orbit) + 1 (pairing)
• For 606 even-even nuclei from AME2012            Mean energy error:  0.97 MeV. 
                                                                                 Standard deviation: 1.46 MeV.





The red line corresponds to QN=4 nucleons in the “neck” 
 
PES obtained with SkM*  in 
       Regnier, Dubray, Schunck, and Verrière 
       Phys. Rev. C 93, 054611 (2016) 



The	following	slides	contain	unpublished	results		
which	are	s2ll	preliminary!	





240Pu	poten2al	energy	surface	E(Q20,Q30)	together		
with	fission	trajectories	in	case	of	SeaLL1	

Einit =-1813.9±1.1 MeV
NH = 82.9±0.4,   ZH  = 52.9±0.2, TH  = 1.15±0.08 MeV, Q20 = 2.58 ± 0.61b
NL = 63.3±0.5,   ZL  = 41.5±0.3, TL  = 1.19±0.12 MeV, Q20 = 17.09 ±1.09b
TKE = 178.0±2.3 MeV
TXE = 33.5±5.1 MeV,    EH

* =19.5±3.8 MeV,  EL
* =14.0±1.9 MeV

TKE+TXE = 211.5±3.3 MeV

                                                                  E*= A
10

T2

Einit =-1808.0±2.4 MeV
NH  = 83.5±0.4, ZH  = 53.2±0.4, TH  = 1.11±0.08 MeV, Q20 = 2.59 ± 0.47b
NL  = 62.8±0.5, ZL  = 41.1±0.4, TL  = 1.39±0.07 MeV, Q20 = 15.65 ± 0.91b
TKE = 177.8±2.8 MeV
TXE = 37.1±2.7 MeV, EH

* =17.0±2.4 MeV,  EL
* =20.1±2.0 MeV

TKE+TXE = 214.9± 2.4MeV



240Pu	poten2al	energy	surface		E(Q20,Q30)	together		
with	fission	trajectories	in	case	of	SkM*mod	

Einit =-1780.5±2.2 MeV
NH  = 84.1±0.9,  ZH  = 53.0±0.5,  TH  = 1.10 ± 0.10 MeV, Q20 =   3.5±0.9 b
NL  = 61.8±0.9,  ZL  = 40.9±0.5,   TL  = 1.20 ± 0.09 MeV, Q20 = 11.3±1.3 b
TKE = 174.5±2.5 MeV 
TXE = 31.5±3.8 MeV , EH

* =16.6±3.1 MeV,  EL
* =14.9±2.3 MeV

TKE+TXE = 206.0±2.4MeV

                                                                        E*= A
10

T2

"Symmetric" case
Einit =-1780.2 MeV
NL  = 72.6,  ZL   = 46.7,  E*

L = 28.5MeV
NH  = 73.4,  ZH   = 47.2,  E*

R = 29.4MeV
TKE = 149.0 MeV
TXE = 57.9 MeV
TKE+TXE = 206.9 MeV
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Effective mass affects the rate at which single-particle levels change with shape 
 
Pairing gaps are basically the same  
 
Smaller effective mass leads to sharper variations of the single-particle levels 
 
 

 

PLZ (1⇒ 2)∝ exp − 2πΔ2
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Summary  

•  While pairing is not the engine driving the fission dynamics, pairing provides the essential 
lubricant, without which the evolution may arrive quickly to a screeching halt. 

•  TDSLDA will offer insights into nuclear processes and quantities which are either not easy 
or impossible to obtain in the laboratory:  

fission fragments excitation energies and angular momenta distributions prior to neutron and γ 
emission, element formation in astrophysical environments, other nuclear reactions … 

•  TDSLDA offers an unprecedented opportunity to test the nuclear energy density functional 
for large amplitude collective motion, non-equilibrium phenomena, and in new regions of 
the collective degrees of freedom. 

•  The quality of the agreement with experimental observations is surprisingly good, especially 
taking into account the fact that we made no effort to reproduce any fission measured data. 

•  TDSLDA predicts long saddle-to-scission time scales and the systems behaves superficially 
as a very viscous one, while at the same time the collective motion is not overdamped. The 
“temperatures” of the fission fragments are not equal.   As W. Mittig pointed recently that 
this could be the key mechanism to create long lived large nuclear systems with Z≈ 100!  

 
•  It is straightforward to implement the Balian and Vénéroni recipe to compute two-body 

observables: fission fragments mass, charge, angular momenta, excitation energy widths, … 


