SENSITIVITY STUDIES AND MTAS MEASUREMENTS FOR THE DECAY HEAT CALCULATION FOR ²³⁵U

Wojciech Bielewski Faculty of Physics, University of Warsaw

LANL FIESTA Fission School & Workshop, Sep. 17-22, 2017

DECAY HEAT - INTRODUCTION

Decay heat (DH) – heat released as a result of the (mainly β) decay of fission products.

For ²³⁵U - app. 13 MeV/fission (7% of total released energy)

http://www.opensourceinvestigations.com/wpcontent/uploads/2015/12/fukusimaaccident.jpg

DH after reactor shutdown can be calculated with following equations: $DH(t) = \sum_{i} (\widetilde{E}_{\beta,i} + \widetilde{E}_{\gamma,i} + \widetilde{E}_{\alpha,i}) \cdot A_{i}(t)$ average decay energies activity $A_{i}(t) = \lambda_{i} y_{i} e^{-\lambda_{i} t} + \lambda_{i} e^{-\lambda_{i} t} \otimes A_{i-1}(t)$ decay constant fission yield

ASSESMENTS

• Assessment of fission product decay data for decay heat calculations, Nuclear Energy Agency Organisation for Economic Co-Operation and Development, OECD 2007

Collaboration of world experts; Goal: assessment and improvement of the evaluated decay data sub-libraries in order to obtain more accurate estimations of DH; List of 37 radionuclides in 3 priority groups recommended for TAGS measurements provided.

- Decay Data Comparisons for Decay Heat and Inventory Simulations of Fission Events, Fleming M., Sublet J.-C., CCFE-R(15)28/S1, June 2015
- Fission Yield Comparisons for Decay Heat and Inventory Simulations of Fission Events, Fleming M., Sublet J.-C., CCFE-R(15)28/S2, June 2015

Calculations provide detailed data of fission pulse events from 15 fissile nuclides (including U-235) for five cooling times (10,100,1000,5011,10000s); Simulation tool: FISPACT-II; List of main contributors in each time after shutdown provided.

SCALE/ORIGEN

scale

The SCALE Code System

Neutronics and Shielding Analysis for Enabling Nuclear Technology Advancements

CASL

- Continuous-energy, high-fidelity reference solutions for reactor physics
- Cross-section data libraries
- Reactor fuel depletion
- Uncertainty quantification

DOE Used Fuel Disposition

- Radiation shielding
- Nuclear fuel depletion
- Used fuel source terms
- Criticality safety analysis
- Uncertainty quantification

DOE Nuclear Criticality Safety Program

- · Criticality safety assessments
- · Sensitivity and uncertainty analysis
- Advanced validation methods
- Experiment design
- Criticality accident alarm system analysis and design

29 SCALE

Nuclear Regulatory Commission

- Supports licensing and regulatory research
 Original sponsors of SCALE since 1976
 Reactor physics and source terms
 - Criticality safety and shielding
 - Cross section data libraries

National Laboratory

Global Distribution

- 7500 users in 56 nations
- Regulators
- Industry
- Research and Development

Nuclear Nonproliferation and Safeguards

• Used fuel and radionuclide source terms

CAK RIDGE

- Reactor depletion analysis
- Radiation transport
- Nuclear forensics

Training materials: SCALE 6.2.1 ORIGEN Training Course

scale

ORIGEN - Oak Ridge Isotope Generation code; calculates time-dependent concentrations, activities and radiation source terms for a huge number of nuclides simultaneously generated/depleted by neutron transmutation, fission and radioactive decay.

DATABASES

SCALE/ORIGEN SIMULATION

DECAY PROPERTIES DATABASES

T. Kawano et al., EPJ Web of Conferences 21, 04001 (2012)

DECAY PROPERTIES DATABASES

T. Kawano et al., EPJ Web of Conferences 21, 04001 (2012)

More than 270 nuclides - few measured/published by Greenwood et al. in 90's

COMPARISON

FISSION YIELDS DATABASE IMPACT

FISSION YIELDS DATABASE IMPACT

FISSION YIELDS DATABASE IMPACT

TOTAL ABSORPTION SPECTROMETER (TAS)

How to avoid the pandemonium effect?

<u>Total Absorption Spectroscopy</u> is an approach for increasing the efficiency of the detector.

ORNL MTAS

Fijałkowska A. et al., Phys. Rev. Lett. 119, 052503, (2017)

For 5 MeV Energy*:

- Gammasphere Peak Efficiency \approx 6%
- MTAS Peak Efficiency ≈ 73%

$$V_{\text{Nal}} = 0,27 \text{ m}^3 \approx 18 \times V_{\text{Nal}}^{\text{Greenwood}}$$

Total decay heat contribution [MeV/fission]

Total decay heat contribution [MeV/fission]

NEW DATA

ISOTOPE	Half-Life [s]	FISSION YIELD (JEFF-3.1)	OECD list (priority)	
As-86	0,9	0,0004	-	
Br- 86	55,0	0,0062	+ (1)	
Rb-89	909,0	0,0026	-	
Rb -90	158,0	0,0008	_	
Rb-91	58,4	0,0223	_	
Rb-92	4,5	0,0287	+ (2)	
Y-94	1122,0	0,0029	_	
Y-96	5,3	0,0073	+ (2)	
Nb-99	15,0	0,0023	+ (1)	ġ
Nb-100	1,5	0,0014	+ (1)	į
Nb-103	1,5	0,0178	-	
Mo- 101	876,6	0,0012	-	1
I-134	3150,0	0,0056	-	
I-136	83,4	0,0091	+ (1)	
I-137	24,5	0,0310	+ (1)	
Cs-138	2004,6	0,0013	-	
Cs-141	24,8	0,0327	-	
Ba-141	1096,2	0,0101	-	
Ba-143	14,5	0,0398	-	
La-142	5466,0	0,0006	-	
La-144	40,8	0,0081	-	
La-145	24,8	0,0158	+ (2)	

Fijałkowska A. et al., Phys. Rev. Lett. 119, 052503, (2017)

CONCLUSION

 Decay heat calculations are sensitive to fission yields used – database chosen

 Measurements are needed to independently confirm Greenwood's experiments

 MTAS setup is suitable for measurements of properties which are essential to decay heat calculations

THANKS TO

MTAS Collaboration:

Karny M.^{1,3}, Fijałkowska A.^{1,2,4}, Rykaczewski K.P.³, Rasco B.C.^{2,3,5}, Grzywacz R.^{2,3}, Gross C.J.³, Wolińska–Cichocka M.^{1,3}, Goetz K.C.², Stracener D.W.³, Goans R.³, Hamilton J.H.⁶, Johnson J.W.³, Jost C.², Madurga M.², Miernik K.^{1,3}, Miller D.², Padgett S.W.², Paulauskas S.V.², Ramayya A.V.⁶, Zganjar E.F.⁵

SCALE/ORIGEN support: Gauld I.³, Weiselquist W.³

ORNL MTAS MEASUREMENTS

Fijałkowska A. *et al.*, Phys. Rev. Lett. **119**, 052503, (2017) Also measured by: Zakari-Issoufou A.-A. *et al.*, Phys. Rev. Lett. **115**, 102503 (2015)

Rasco B.C. et al., Phys. Rev. C 95, 054328, (2017)

GREENWOOD'S PAPERS

TOTAL Nal VOLUME: $V_{\rm Nal} = 0,015 \text{ m}^3$

R.C.Greenwood *et al.*, Nucl.Instrum.Methods Phys.Res. A390, 95 (1997) R.C.Greenwood *et al.*, Nucl.Instrum.Methods Phys.Res. A378, 312 (1996) R.C.Greenwood *et al.*, Nucl.Instrum.Methods Phys.Res. A317, 175 (1992)

NEW INDEPENDENT MEASUREMENTS WITH BETTER (LARGER) EXPERIMENTAL SETUP NEEDED TO CONFIRM GREENWOOD'S RESULTS

M. Wolińska-Cichocka *et al.*, Nucl.Data Sheets 120, 22 (2014) – ¹⁴²Ba and ¹⁴²La 27

INVENTORY OF ISOTOPES

ISOTOPE	Half-Life [s]	FISSION YIELD (JEFF-3.1)	OECD list (priority)
As-86	0,9	0,0004	-
Br-86	55,0	0,0062	+ (1)
Rb-89	909,0	0,0026	-
Rb-90	158,0	0,0008	-
Rb-91	58,4	0,0223	-
Rb-92	4,5	0,0287	+ (2)
Y-94	1122,0	0,0029	-
Y-96	5,3	0,0073	+ (2)
Nb-99	15,0	0,0023	+ (1)
Nb-100	1,5	0,0014	+ (1)
Nb-103	1,5	0,0178	-
Mo-101	876,6	0,0012	-
I-134	3150,0	0,0056	-
I-136	83,4	0,0091	+ (1)
I-137	24,5	0,0310	+ (1)
Cs-138	2004,6	0,0013	-
Cs-141	24,8	0,0327	-
Ba-141	1096,2	0,0101	-
Ba-143	14,5	0,0398	-
La-142	5466,0	0,0006	-
La-144	40,8	0,0081	-
La-145	24,8	0,0158	+ (2)

INVENTORY OF ISOTOPES

ISOTOPE	Half-Life [s]	Fission Yield (JEFF-3.1)	ΔFission Yields [%]	E_beta average exp (ENDF/B-VII.1) [keV]	∆E_beta average [%]	TAS measurements
As-86	0,9	4,4E-04	57,2	—	_	—
Br-86	55,0	0,006	28,1	1944	1,76E-04	[6] , [8]
Rb-89	909,0	0,003	19,8	969	0,001	[6] , [9]**
Rb-90	158,0	8,1E-04	64,4	1905	0,002	[6] , [9]**
Rb-91	58,4	0,022	4,4E-02	1410	2,818	[8] , [9]**
Rb-92	4,5	0,029	9,0	3628	20,962	[6], [7], [15]
Y-94	1122,0	0,003	32,8	1810	0,267	[9]** , [11]
Y-96	5,3	0,007	63,8	3210	0,131	[7]
Nb-99	15,0	0,002	87,0	1450	0,008	—
Nb-100	1,5	0,001	103,3	2550	0,088	—
Nb-103	1,5	0,018	21,7	—	-	—
Mo-101	876,6	0,001	58,5	548	0,002	[12]
I-134	3150,0	0,006	10,0	582	0,001	—
I-136	83,4	0,009	43,7	1950	0,098	—
I-137	24,5	0,031	14,3	1920	2,317	[13]
Cs-138	2004,6	0,001	86,0	1240	0,332	[9]**
Cs-141	24,8	0,033	10,7	1510	1,288	[9]**
Ba-141	1096,2	0,010	64,5	938	7,24E-05	[9]**
Ba-143	14,5	0,040	3,5	1200	1,468	[9]**
La-142	5466,0	5,7E-04	66,8	954	0,002	[9]** , [14]
La-144	40,8	0,008	32,0	1030	0,915	[9]**
La-145	24,8	0,016	21,2	854	3,132	[9]**

[6] Fijalkowska A. et al., Phys. Rev. Lett. 119, 052503, (August 2017)

[7] Rasco B.C. et al., Phys.Rev.Lett. 117, 092501 (2016)

[8] Rice S. et al., Phys.Rev. C 96, 014320 (2017)

[9] Greenwood R.C. et al., Nucl.Instrum.Methods Phys.Res. A390, 95 (1997)

[10] Zakari-Issoufou A.-A. et al., Int.Nuclear Physics Conf. 2013, (IUPAP), Firenze, Italy, June 2-7, 2013, S.Lunardi, P.G.Bizzeti et al., Eds.p.10019 (2014); EPJ web of Conf.v.66, (2014)

[11] Tain J.L. et al., Phys.Rev.Lett. 115, 062502 (2015)

[12] Algora A. et al., J.Korean Phys.Soc. 59, 1479s (2011)

[13] Rasco B.C. et al., Phys.Rev. C 95, 054328 (2017)

[14] Wolinska-Cichocka M. et al., Nucl.Data Sheets 120, 22 (2014)

[15] Zakari-Issoufou A.-A. et al., Phys. Rev. Lett. 115, 102503 (2015)