Gamma-Ray Output Spectra from 239Pu Fission

J.L. Ullmann
(For the DANCE collaboration)

LANSCE-NS
Los Alamos National Laboratory
Los Alamos, New Mexico USA

Workshop on Fission Experiments and Theoretical Advances
(FIESTA)
Sept. 10 - 12, 2014
Santa Fe, New Mexico

LA-UR-14-27044
Collaborators and Acknowledgements

Los Alamos National Laboratory

C.-Y. Wu, A. Chyzh, J.A. Becker, J. Gostic, R. Henderson, E. Kwan

Lawrence Livermore National Laboratory

Support provided by
US DOE / NNSA
Contract DE-AC52-06NA25396
(Los Alamos National Security, LLC)
Contract DE-AC52—07-NA27344
(Lawrence Livermore National Security, LLC)
American Reinvestment and Recovery Act
Fission Physics

Initial fragment - high spin, excitation

Neutron decay - removes excitation

Gamma decay - (E1) removes spin and energy

Gammas - from fragment decay
 - neutron rich (?) Structure
 - Fragment mass distribution changes with neutron energy

\[^{239}\text{Pu}(n,f) \]
\[\nu_n = 2.9 \]
\[\nu_\gamma = 7.2 \] (Thermal)
Gamma-ray output from $^{239}\text{Pu}(n,fission)$

- Prompt gamma ray emission from fission not well studied
 - Only 1 published spectrum for $^{239}\text{Pu}(n,f)$ – at thermal
 - (V.V. Verbinski, Phys. Rev. C 7, 1173 (1973))
 - Other measurements – but do cover wide gamma energy range

- Experiment at LANSCE moderated white neutron source
 - Need fission tagging – use LLNL/LANL PPAC
 - Gammas detected using Detector for Advanced Neutron Capture Experiments (DANCE) “4π” detector
 - Gammas \pm 20 ns from fission event
 - Direct measurement of multiplicity and total energy distribution
DANCE gamma-ray calorimeter

- 160 BaF$_2$ crystals – each 0.75 liter
- Inner radius = 17 cm, crystal depth = 15 cm
- 6LiH inner sphere to absorb scattered neutrons
- Internal conversion plus absorption in LiH may affect low-energy gamma spectrum
DANCE and LANSCE

DANCE ball
(Open)
6LiH sphere in center

(Los Alamos Neutron Science Center (LANSCE))
Fission tagging using PPAC

LLNL / LANL / MSI PPAC
4.37 cm dia X 4.77 cm long

Fission efficiency ~ 70%

PPAC Target Assembly

PPAC Params
- Gas = Isobutane
- P = 4.5 Torr
- Flow = 4 cc/m
- 239Pu (total) = 2.43 mg/cm2
- (0.7 cm dia deposit)
- 99.967% enriched
DANCE response correction crucial

Single gamma efficiency $\epsilon = 0.85$

7 gammas $\Rightarrow \epsilon = (0.85)^7 = 0.40$

Methods of response correction

“Inverse Methods” – solve $O = R \, I$ for input spectrum I

1-dimensional or 2-dimensional O and I

1D: E_γ, Mult each unfolded

2D: Unfold E_{tot} vs Mult Matrix

“Forward Methods” – Assume spectra, simulate response and compare

Iterate spectra until fit

Ultimate - use a real physics model with parameters

Experimental approach - don’t depend on physics model

Parameterize data analytically

NOT (!!) a physics model (but may be motivated by physics)
Detector Response Correction

(Preliminary results shown in this figure!)

\[\epsilon = 0.85 \quad \text{(Geometric)} \]

\[\epsilon = (0.85)^7 \quad \text{for 7 gamma rays} = 0.40 \]
Parameterized fission spectra

Multiplicity
- Sum over two distributions
 \[M_\gamma = M_1 + M_2 \]
- Assume Multiplicity ~ Spin distributions \(P(J) \sim (2J+1)e^{-J(J+1)/B^2} \)
 (Wilhelmy, Phys Rev C 5, 2041 (1972))

Gamma energy distribution
- \(P(\varepsilon) \sim T(\varepsilon) \rho(\varepsilon) \quad T(\varepsilon) \sim A \varepsilon^3 \) (E1), \(\rho(\varepsilon) \sim Be^{a(E_0-\varepsilon)} \)
- Best fit:
 \[P_1(\varepsilon) \sim \varepsilon^2e^{-(a_1+M_\gamma b_1)\varepsilon} \]
 \[P_2(\varepsilon) \sim \varepsilon^3e^{-(a_2+M_\gamma b_2)\varepsilon} \]
 (Fit params: \(a_1, a_2, b_1, b_2 \))
- Observed Gamma spectrum is sum over many fission products
 - Different excitation energies, temperatures, multipolarity
- Parameterization - not a physics model
Procedure for fitting parameters

- Generate event consisting of $M_\gamma = M_1 + M_2$ gamma rays with energy ε_i from $P(M_{1,2})$ and $P_{1,2}(\varepsilon_\gamma)$
- Transport all gammas from event through GEANT4 model of DANCE to produce “experimental” values
- Compare to measured values – calculate χ^2
 - M_{cr} chosen to avoid overlapping clusters
 - M_{cr} easily simulated by GEANT
 - E_{tot} (Tresh = 150 and 400 keV)
 - M_{cr} (150 keV Threshold)
 - E_γ (150 keV threshold)
 - More weight to higher threshold
- Vary parameters at random to find minimum χ^2
 - Iterated “Simulated Annealing” technique
 - Vary parameters over range $1 \pm \delta$
 - $P(\Delta) = e^{-\Delta/T}$
Detour: Fission neutron response

DANCE response to fission-spectrum neutrons

Total Efficiency for neutrons 1.3%
\(^{239}\text{Pu}(n,\text{fission})\) Cross Section

Current results gated on 10.93 + 11.89 eV 1\(^+\) resonances
Thermal, 7.82, 22.26, 75.0 1\(^+\) and 32.33 0\(^+\) resonances
have similar spectra
Best-fit parameters

\[P(M_\gamma) = P(M_1) + P(M_2) \]

\[P(M_1) = (2M_1 + 1)e^{-M_1(M_1+1)/B_1^2} \]

\[P(M_2) = (2M_2 + 1)e^{-M_2(M_2+1)/B_2^2} \]

\[P_1(\varepsilon_\gamma) = \varepsilon^2 e^{-(a_1 + M_\gamma b_1)\varepsilon} \]

\[P_2(\varepsilon_\gamma) = \varepsilon^3 e^{-(a_2 + M_\gamma b_2)\varepsilon} \]

\[\begin{align*}
B_1 &= 6.66 \pm 0.15 \\
B_2 &= 2.54 \pm 0.12 \\
a_1 &= 3.80 \pm 0.12 \\
a_2 &= 1.53 \pm 0.14 \\
b_1 &= 0.0428 \pm 0.0019 \\
b_2 &= 0.0522 \pm 0.0034
\end{align*} \]
Raw Data vs Parametrized fit

(All spectra for 150 keV E_{cr} threshold)
Theoretical Calculations

Monte-Carlo Hauser-Feshbach Model

- Fragment mass distribution semi-empirical
- Radiative strength functions from RIPL-3
- Level density was Gilbert-Cameron formalism
- Spin Distribution:

\[P(J) = (2J+1)e^{-J(J+1)/2B^2} \]

\[B = \alpha \frac{I_o T}{\hbar^2} \]

- \(I_o \) = ground-state moment of inertia
- \(T \) = fragment temperature
- \(A \) = adjustable parameter
Results – Gamma-ray Multiplicity

239Pu(n,f) Measured
CrystalMultiplicity very sensitive to threshold

Average Raw Crystal Multiplicity

<table>
<thead>
<tr>
<th>Threshold (keV)</th>
<th><Mcl></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>7.2</td>
</tr>
<tr>
<td>300</td>
<td>5.7</td>
</tr>
<tr>
<td>400</td>
<td>4.7</td>
</tr>
</tbody>
</table>

239Pu(n,f) Corrected γ Multiplicity

- 150 keV Threshold
- MCHF from Stetcu, LA-UR-14-23128 ($\alpha = 1.5$)
Results: 239Pu(n,f) Gamma Energy

Measured (before response correction) cluster energy for Cluster Multiplicities 4, 8, 12

- Response-corrected gamma energies (all multiplicities)
- MCHF Calculation (Stetcu)
- Unfolded 1D (Chyzh)
Results: 239Pu(n,f) Total gamma-ray energy

- Response-corrected gamma energies (all multiplicities)
- MCHF Calculation (Stetcu, $\alpha = 1.5$)
$^{239}\text{Pu}(n,f)$ Average γ Multiplicity and $E_{\text{tot},\gamma}$

<table>
<thead>
<tr>
<th>Source</th>
<th>$<M>$</th>
<th>$<E_{\text{tot},\gamma}>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Work (10.93 eV)</td>
<td>7.15 ± 0.09</td>
<td>7.46 ± 0.06</td>
</tr>
<tr>
<td>Pleasonton (thermal)</td>
<td>6.88 ± 0.35</td>
<td>6.73 ± 0.35</td>
</tr>
<tr>
<td>Verbinski (thermal)</td>
<td>7.23</td>
<td>6.81</td>
</tr>
<tr>
<td>Verbinski (thermal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbinski (thermal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCHF (Stetcu/Talou)</td>
<td>7.05</td>
<td>6.74</td>
</tr>
<tr>
<td>Madland Summary</td>
<td></td>
<td>6.74</td>
</tr>
<tr>
<td>Chyzh, “1D” Unfolding</td>
<td>7.50</td>
<td>7.30</td>
</tr>
<tr>
<td>Chyzh, “1D” Unfolding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chyzh “2D” Unfolding</td>
<td>7.93</td>
<td>7.94</td>
</tr>
<tr>
<td>Chyzh “2D” Unfolding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Uncertainty in $<E_{\text{tot}}>$ ~ Fitting uncertainty, determined as σ of 14 iterations with lowest χ^2
- $<M>$ very sensitive to detection threshold!
Unexpected detail: \((n,\gamma f)\)?

Resonances we studied looked to be quite similar – but is that universally true? (S. Mosby - \(^{239}\text{Pu}(n,\gamma)\) analysis)

\(<n_n>\) dips at several weak \(L=0\) resonances

- 35.5 eV 1+
- 41 1+
- 44.5 1+
- 52.7 1+

Neutron multiplicity measurements

Gamma multiplicity measurements
Resonance properties – Raw data

Gamma multiplicity

Total Gamma Energy
Summary and Conclusions

- Measurements of distribution of multiplicity, gamma energy, and total gamma energy (“forward modeling” parameterization of data) - Needs high-segmentation, 4π capability !!
- Average multiplicity in agreement with previous measurements - sensitive to thresholds
- Average $E_{\text{tot}} \sim 10\%$ higher than previous
- Theoretical modelling reproducing ^{239}Pu data, but with adjustable parameters
- Still some puzzles: $(n,\gamma f)$?
- “More work to be done!”
Why study fission gammas?

• Applications - need to know distribution of gamma-ray multiplicity, gamma energy, total gamma energy
 – Reactors: heating, decay heat
 – Non proliferation
 – Illicit nuclear materials (portal monitors)

• Physics of fission
 – Fission products - high-spin, neutron-rich
 – Decay properties constrain models
<E_\gamma> Changes with neutron energy

- Fragment mass distribution changes with neutron energy
- Madland formula reflects changing products and J (excitation)
 \[E_{\text{tot}} = 6.741 + 0.117 T_n \text{(MeV)} - 0.0002 T_n^2 \text{ MeV} \]
- Low energies resonances – no significant change in gamma properties
 (Thermal and 100 keV should have similar <E_\gamma>)

PPAC Performance

PPAC Pulse Height

- **h_PPAC_E2**
 - Entries: 86925
 - Mean: 403.8
 - RMS: 166.5

- **PPAC Efficiency**
 - PPAC Threshold = 350

- **Run**:
 - Values range from 27110 to 27150.
Measure Mult ($\nu\gamma$), E_{gam}, E_{tot} and Neutron energy

No fission tag
(Capture + (1-ϵ) Fission)
Response Correction / Unfolding

• Philosophy – experimenters want to measure something,
 • Not just fit parameters to a theory
• Forward method – not a physics model
 • Parameters motivated by physics
 • but really only parameters
 • Represent data
Detour: Fission neutron response

Fission neutrons – Ave energy ~ 2 MeV
BUT – High energy tail! (Maxwellian)

Fission neutron effects – MCNP by TNT
Transport 252Cf fission neutron spectrum into DANCE

 DIMENSIONS:

6LiH sphere = 10.50 cm (id)
16.51 cm (od)
0.85 g/cm3

252Cf sphere = 17.00 cm (id)
32.00 cm (od)
4.88 g/cm3

252Cf point source at center

(MCNP Calculations by T. Taddeucci)
Detector Response Function

Multiplicity

• Sum over two distributions
 \[M_y = M_1 + M_2 \]

• Spin distributions \(P(J) \sim (2J+1)e^{-J(J+1)/B^2} \)
 (Wilhelmy, Phys Rev C 5, 2041 (1972))

• Assume \(P(M) = P(J) \) (Number of gammas = spin)
 (Good for E1, M1 roughly)

• 2 fission products \(\Rightarrow P(M_y) = P(M_1) + P(M_2) \)

B’ s are fitted - M’ s (J’ s) are random variables
Detector Response Function

Gamma energy distribution

- $P(\epsilon) \sim T(\epsilon) \rho(\epsilon)$
 - For E1 transitions: $T(\epsilon) \sim A \epsilon^3$
 - “Constant Temperature” $\rho(\epsilon) \sim B e^{aE_x} = B e^{a(E_0 - \epsilon)}$
 - $P(\epsilon) \sim \epsilon^3 e^{-a\epsilon}$

- Lemaire calculation: $P(\epsilon) \sim \epsilon^2 e^{-\beta \epsilon}$

- Best fit:
 - $P_1(\epsilon) \sim \epsilon^2 e^{-(a_1 + M_1 b_1)\epsilon}$
 - $P_2(\epsilon) \sim \epsilon^3 e^{-(a_2 + M_2 b_2)\epsilon}$
 (Fit params: a_1, a_2, b_1, b_2)

- Observed Gamma spectrum is sum over many fission products
 - Different excitation energies, temperatures, multipolarity

Details:
M. Jandel et al., Los Alamos Report LA-UR-12-24975
Multiplicity dependence of E_{tot} and E_{γ}

- **E_{γ}**: no strong multiplicity dependence
- **E_{tot}**: E_{tot} roughly proportional to multiplicity
Multiplicity sensitive to DANCE threshold

Multiplicity, total energy with different thresholds determined from MCHF calculation
High-energy gammas

Changes to Analysis 29-Aug-12

• Parameterization
• Method fitting: “Metropolis Algorithm” + Simulated Annealing
• Parameters fitted for Chi-square minimization
 • 7 spectra (P9VA2MD)
 • Overestimates high-energy effect
 • 4 Spectra (P9VA2ME)
• Uncertainties in $\langle E \rangle$, $\langle M \rangle$
 • New method of minimization implies cannot easily use previous technique for estimating uncertainties
• Use % Std of 14 best-fit (lowest Chi2) iterations
• BUT - use Value of best-fit iteration!
• Effect of threshold on measured multiplicity
Previous Measurements

Other measurements – incomplete Gamma energy range

• “Unfolding” of measured spectrum critical to results
• Pleasonton also determined fission product ID from Doppler shift.
PPAC Assembly

- Front cover with assembled polyimide rings
- Counter container
- Back cover with the Kapton window and gas feedthrough
- The assembled polyimide ring for one of two anodes
- Flexible cable for the anode signal transmission

Fig 4. Various counter parts before the final assembling.