The University of New Mexico
Fission Fragment Spectrometer

Adam Hecht, Richard Blakeley, Lena Heffern, James Cole, Corey Vowell, Paul Gilbreath

Department of Nuclear Engineering
University of New Mexico

Part of the LANL SPIDER collaboration

FIESTA Workshop
Santa Fe, NM
Sept. 11, 2014
UNM Fission Fragment Spectrometer

• Motivation for fission fragment data
• Method
• Hardware
• Characterization and preliminary results
• Next steps
• Summary
The desired data to understand fission, delayed radiation
The desired data to understand fission, delayed radiation

Basically have
Fission cross section
some A distributions

Some frag. distributions N,Z
for thermal, fast, 14 MeV n

 Want N,Z distributions,
fragment cross sections,
over range of En
Motivation – fission theory

Yield varies with fission target, energy. Need data to work back to fission preformation states.

P. Möller et al., Nature 409, 785-790 (15 February 2001)
Motivation – active interrogation
Delayed signal from β, $\beta(n)$ decay

Delayed radiation:
Beta decay, gamma emission, some neutron emission

<table>
<thead>
<tr>
<th>43</th>
<th>Tc 94 4.883h</th>
<th>Tc 95 61d</th>
<th>Tc 96 4.28d</th>
<th>Tc 97 2.6e+06y</th>
<th>Tc 98 4.2e+06y</th>
<th>Tc 99 2.11e+05y</th>
<th>Tc100 15.46s</th>
<th>Tc101 14.2m</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Mo 93 4000y</td>
<td>Mo 94 9.25</td>
<td>Mo 95 15.92</td>
<td>Mo 96 16.68</td>
<td>Mo 97 9.55</td>
<td>Mo 98 24.13</td>
<td>Mo 99 2.747d</td>
<td>Mo 100 9.63</td>
</tr>
<tr>
<td>41</td>
<td>Nb 92 3.47e+07y</td>
<td>Nb 93 100</td>
<td>Nb 94 2.03e+04y</td>
<td>Nb 95 34.99d</td>
<td>Nb 96 23.35m</td>
<td>Nb 97 1.202h</td>
<td>Nb 98 51.3m</td>
<td>Nb 99 2.6m</td>
</tr>
<tr>
<td>40</td>
<td>Zr 91 11.22</td>
<td>Zr 92 17.15</td>
<td>Zr 93 1.53e+06y</td>
<td>Zr 94 17.38</td>
<td>Zr 95 64.03d</td>
<td>Zr 96 2.8</td>
<td>Zr 97 16.74h</td>
<td>Zr 98 30.7s</td>
</tr>
<tr>
<td>39</td>
<td>Y 90 2.667d</td>
<td>Y 91 38.31m</td>
<td>Y 92 3.54h</td>
<td>Y 93 10.18h</td>
<td>Y 94 18.7m</td>
<td>Y 95 10.3m</td>
<td>Y 96 9.6s</td>
<td>Y 97 3.75s</td>
</tr>
<tr>
<td>38</td>
<td>Sr 89 50.53d</td>
<td>Sr 90 28.79y</td>
<td>Sr 91 9.63s</td>
<td>Sr 92 2.71h</td>
<td>Sr 93 7.423m</td>
<td>Sr 94 1.255m</td>
<td>Sr 95 23.9s</td>
<td>Sr 96 1.07s</td>
</tr>
<tr>
<td>37</td>
<td>Rb 88 17.77m</td>
<td>Rb 89 15.15m</td>
<td>Rb 90 4.3m</td>
<td>Rb 91 58.42s</td>
<td>Rb 92 4.492s</td>
<td>Rb 93 5.84s</td>
<td>Rb 94 2.702s</td>
<td>Rb 95 0.3775s</td>
</tr>
<tr>
<td>36</td>
<td>Kr 87 1.272h</td>
<td>Kr 88 2.84h</td>
<td>Kr 89 3.15m</td>
<td>Kr 90 32.32s</td>
<td>Kr 91 8.5</td>
<td>Kr 92 1.84s</td>
<td>Kr 93 1.286s</td>
<td>Kr 94 0.2s</td>
</tr>
<tr>
<td>35</td>
<td>Br 86 55s</td>
<td>Br 87 55.6s</td>
<td>Br 88 16.5s</td>
<td>Br 89 4.4s</td>
<td>Br 90 1.92s</td>
<td>Br 91 0.541s</td>
<td>Br 92 0.343s</td>
<td>Br 93 0.102s</td>
</tr>
</tbody>
</table>

Br91 (0.5s) \rightarrow Kr91 (8.6s) \rightarrow Rb91 (58s) \rightarrow Sr91 (9hr) \rightarrow Y91...

http://wwwndc.jaea.go.jp/CN10/CN010.html
The plan: Measure fission fragments vs. N energy, event by event
Pulsed P beam on N convertor
N on fission target

Neutron Time Of Flight to fission target gives E_n
Method, E-v spectrometer

TOF followed by Ionization Chamber: TOF-IC
A, Z, E measurements

\[v:\ \text{TOF} \]
\[E:\ \text{Ionization chamber} \]
\[A:\ \frac{m}{v^2} = \frac{2Et^2}{l^2} \quad \frac{\delta m}{m} = \sqrt{\frac{\delta E}{E}^2 + \left(\frac{2\delta t}{l}\right)^2 + \left(\frac{2\delta l}{l}\right)^2} \]

\[Z:\ \text{Ionization chamber rewiring and analysis, will describe} \]

\[N:\ \text{A and Z } \Rightarrow \text{ N} \]

Moving towards dual arm for UNM Fission Fragment Spectrometer: get TKE, v
Mass Resolution Requirements

light fragments

\[m = \frac{2E}{\sqrt{\nu^2}} = \frac{2Et^2}{l^2} \]

\[\frac{\delta m}{m} = \sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(2\frac{\delta t}{t}\right)^2 + \left(2\frac{\delta l}{l}\right)^2} \]

fwhm/centroid = 1/90 = 1.1%

PUSHING TO heavy fragments

fwhm/centroid = 1/140 = 0.7%

Interplay of variables

L good, for 1 m need < 7mm

really depends on E and t

absolute max

need \(\delta E/E < 0.7\% \)

need \(\delta t/t < 0.35\% \)

A separation from Cosi Fan Tutte spectrometer

Overview of Instrumentation
Time-of-Flight

- Electrostatic mirror
 - Inner grid: -2.2 kV
 - Outer grid: -6.2 kV
- Insulating frames
 - Carbon foil: -4.2 kV
- Acceleration grid
 - -2.2 kV
- Channel plates
 - -1.2 kV
 - -0.2 kV

- Anode: 0 V

- Sample

- Fission fragment

- TOF Data
 - Entries: 2236
 - Mean: 6.388e+04 ± 6.39e+04
 - RMS: 839.9
 - χ^2 / ndf: 50.39 / 30
 - Constant: 58.25 ± 2.57
 - Mean: 6.39e+04 ± 5.61e+00
 - Sigma: 158.2 ± 5.4
Overview of Instrumentation
Ionization Chamber

Pu, Am, Cm alpha source
<1.5% resolution, ff expect <0.4% fwhm/centroid

Designs following Oed et al.
NIM 205 (1983) 455-459
January 2014 results from $n + ^{235}U$ at LANSCE

TOF

IC: Energy

80 MeV

110 MeV
Recent Characterization Results
Ionization Chamber

$^{239}\text{Pu} + ^{252}\text{Cf}$ alphas

IC data overnight, low drift, < 2% E resolution alphas

$^{239}\text{Pu} + ^{252}\text{Cf}$

IC: fragment data
Recent Characterization Results

Time Of Flight

^{252}Cf and ^{239}Pu alphas, 1m, 200 ps sigma

Alphas 63 and 68 ns, 0.7% resolution

resolution with 100 μg/cm2 C foils

Changing to 20 μg C foils, lower straggling

especially for fragments - higher Z

→ improve TOF resolution
Recent Characterization Results

Time Of Flight

252Cf, 239Pu alphas
50 cm TOF

Fission fragments from Cf (50 cm TOF)
Next Steps

• Correlated TOF/KE data \rightarrow extract mass distribution

• Improve Resolution:
 – Thinner TOF foils \rightarrow less t straggling
 • from 100 to 20 ug C foils
 – Thinner IC window \rightarrow less E straggling
 • switched to 1.5 um mylar (from 2.5)
 • will change to 0.2 μm SiN

• Z information from Ionization Chamber will have A,Z,N, KE

• Dual arm: direct measurement of TKE, ν
Z determination - Bragg curve analysis (≥ 1MeV/amu, light fragments)

Bragg curves in P-10 gas tri-nuclide α source similar peaks, different integrals (fast vs. slow amps)

UNM FFS Pu and Cf

Range follows Bethe formula Z, ν (thus E, m) dependent SRIM calc. fission fragments (300 torr P-10)

140Xe, 70 MeV

90Sr, 115 MeV

80Ge, 121 MeV
Z determination - Active Cathode
(> 0.5 MeV/amu, light and heavy)

Range is Z dependent
Measure range from Cathode time vs. anode time using e drift velocity

Range Z dependent

Measure range from Cathode time vs. anode time using e drift velocity

UNM FFS: Δt vs. E Plotted, Cf and Pu preliminary
Summary

- Prototyped Fission Fragment Spectrometer
 - TOF
 - Ionization Chamber
 - Tested with Cf at UNM, $n^+{}^{235}U$ at LANSCE
- Correlating TOF and KE for mass spectra
- Improving resolution
- Ionization Chamber tests for Z determination
 - Bragg spectroscopy
 - Active Cathode
- Implementing Z determination in full TOF/IC spectrometer
Thank you

Graduate students
• Rick Blakeley - TOF
• Lena Heffern - IC
• James Cole - IC
• Graduated MS student Drew Mader - IC

Undergraduate students
• Paul Gilbreath
• Corey Vowell

SPIDER collaboration

NEUP grant DE-NE0000732