Developmentsin the Calculation of Fission Potential-Energy Surfaces
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We present calculations based on a realistic theoreticaleinaf the multi-dimensional potential-energy surface
of a fissioning nucleus. This surface guides the nucleareskaplution from the ground state, over inner and outer
saddle points, to the final configurations of separated fisBagments. Until recently, no calculation has properly
explored a shape parameterization of sufficient dimen8tgrta permit the corresponding potential-energy surface
to exhibit the multiple minima, valleys, saddle points arttfjes that correspond to characteristic observables of the
fission process. Here we calculate and analyze five-dimeaispmtential-energy landscapes based on grids of several
million deformation points. We find that observed fissiortdieas such as different energy thresholds for symmetric and
asymmetric fission and fission-fragment mass and kineteggndistributions are very closely related to properties o
the valleys and mountain passes present in the calculatedifivensional energy landscapes. We have also determined
fission-barrier heights for 31 nuclei throughout the padaystem.
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I. Introduction

When a heavy nucleus divides into two fragments in n
clear fission, two key aspects of the process have challenge

liquid-drop model of nuclear fission is able to explain cierta
features of fission-fragment mass and kinetic-energyiblistr
s For example:

researchers since the discovery of fission more that 60 years. Nyclei neaR28Ra exhibit two fission modes. We show

ago. First, what is the threshold energy for the reaction and
second, what are the shapes involved in the transition from a
single nuclear system to two separated daughter fragment nu
clei? These two questions are intimately connected. The en-
ergy of a nucleus as a function of shape defines a landscape in
a multi-dimensional deformation space. It is the energyeft
lowest mountain pass, or saddle point, in this landscapwe, co
necting the nuclear ground state with the region corresipognd

to separated fragments that represents the thresholdyewferg

the fission process.

After the discovery of fission in 1938 by Hahn and Strass-
manr? the phenomenon was almost immediately explained

by Meitner and Frisch and by Bohr and Wheel&rin terms

of a model involving a charged liquid drop with a surface
tension. When the atomic number increases, the drop be-
comes increasingly unstable with respect to deformatiah an

at proton numbel =~ 100 stability is completely lost. For
slightly lower-Z actinide nuclei the fissiobarrier between

the ground-state shape and the separated-fragment configu-
ration is sufficiently small that spontaneous fission, due to
guantum-mechanical penetration of the fission barriemiescc
with measurable probability. Fission may also be induced by
exciting the nucleus to energies above the barrier energy. | 3.
some cases, such as-23*U, thermal neutron capture yields

sufficient energy to excite the nucleus above the barrier.

In a pioneering use of the first electronic digital computer
ENIAC, Frankel and Metropolf$in 1947 explored some key

aspects of the liquid-drop-model potential-energy laagsc

In particular, they determined the shapes of nuclei at tde sa
dle point threshold energies in the macroscopic model they

investigated. However, no macroscopic model such as the , .
In the 1960s an improved model for the nuclear potential en-

in Fig. 1 an example of the extensive data obtained in
Referencé) In one mode, with the lower threshold en-
ergy, the fragment mass distribution is asymmetric and
the fragment total kinetic energy is about 10 MeV higher
than in the other, symmetric mode. The kinetic energies
indicate that the scission configuration is more compact
for the asymmetric mode than for the symmetric mode.
From the totality of the data Ré&F.concludes: “Thus it
seems that after the gross determination of the symmet-
ric or asymmetric character of fission made already at the
barrier, the two components follow a different path with
no or little overlap in the development from the barrier to
the scission configuration.”

Here in Japan it has been determined that many nuclei
in the light actinide region exhibit similar fission proper-
ties5®

Most actinide nuclei near the line Gfstability undergo
mass-asymmetric fission. The heavy-fragment mass is
close to 140 from Th to Fm, with the remainder of the
mass in the light fission fragment.

Near the upper end of the actinide region fission proper-
ties change suddenly and may exhibit a different type of
bimodal character in the same nucleus. For example, the
fragment mass distribution changes suddenly from mass-
asymmetric foP%6Fm to symmetric fo3®Fm and there

is a correlatedncrease in the total fragment kinetic en-
ergy (TKE) by 35 MeV. But?*®Fm also exhibits the
asymmetric mode with the lower TKE.
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microscopic model? 19 the potential energy is the sum of
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shape-dependent liquid-drop and microscopic terms. Meer t
past 30 years this model has provided considerable insight
into nuclear structure. For example nuclear masses are cal-
culated for nuclei throughout the periodic system to an-aver
age accuracy of about 0.7 MeV. Improved descriptions of the
fission barrier, for example fission-isomeric states andsmas
asymmetric fission saddle points were obtained in this model
However, since the spurt of insights in the early 1970s no
major improvement in the description of the fission potdntia
energy landscape has been obtained. Many calculationd base
on 1000 or so grid points have been presented. But, to prop-
erly describe the evolution of a single nuclear shape into tw
fragments of different mass and deformation, for example
one spherical32Sn-like fragment and one deformed frag-
ment with mass numbet near 100, at least five independent
shape parameters are required. We have here construdted, ca
culated, and investigated such a five-dimensional spade wit
2610885 grid points. Specifically, the five shape coordinates
are: (1) charge quadrupole moment, (2) neck diameter, (
left nascent-fragment deformation, (4) right nascenginant
deformation, and (5) mass asymmetry.

[I. Model

Our potential-energy model

Distance between Mass Centers r (Units of Ry)

Fig. 2 Calculated macroscopic and total potential energies fapsh

sequences leading to the touching configuration, at the long
dashed line, of sphericafzZn and*°®Hg

To the left the calculations trace the energy feirale, joined
shape configuration from oblate shapes through the spherica
shape at = 0.75 to the touching configuration at= 1.52;

to the right the calculations trace the energy for sepanated
clei to the touching point. To obtain continuity of the energ

at touching, a crucial, necessary feature in realistic nspde

it is essential that various model terms depend appropyriate
on nuclear shape, as is the case for the curves (a). The slight
remaining discontinuity in the total fusion energy curvises
because the Fermi surfaces of the nuclei readjust at togichin

and because pairing and spin-orbit terms also change discon
tinuously there.

hether the energy is calculated as that of a very deformed
compound system or as that of two separate nuclei with
appropriate Coulomb and nuclear interaction energies.
introducing shape dependences for the Wigner ahderms
in the macroscopic part of the model and implementing other
features in the microscopic part, we have assured that the

is the macroscopicmodel has the required properties. These issues are distuss

By

microscopic finite-range liquid-drop model as defined inn further detail in Refé¢213) It is not possible to formulate
Ref with shape-dependent Wigner arfl terms as defined the droplet model satisfactorily in the limit of the touchin

in REf.lz) In fission-barrier calculations it is essential tOConﬁguration; for this reason we use the FRLDM version
formulate the model so that the energy obtained for thg our calculations instead of the FRDM. Fig. 2 we show
Configuration of two tOUChing Spherical nuclei is the SaMehat when appropriate Shape dependencies are included

*At the present time we do not consider parameterizationsal@awv the
study of ternary fission. However, at low excitation energyy@approxi-
mately one in five hundred fissions are ternary in the actireden.

for the Wigner and4® terms then we obtain approximate
continuity at touching: almost the same energy is obtained
for a very deformed shape with zero neck radius as for



The three-quadratic-surface parameterization (3QSkis id
Five Essential Fission Shape Coordinates ally suited for the above descriptidfi.In the 3QS the shape
of the nuclear surface is specified in terms of three smoothly
joined portions of quadratic surfaces of revolution. Usinig
parameterization we here construct, calculate, and iigagst
complete five-dimensional spaces witls10 885 grid points
as illustrated irFig. 3.

A common notation used to characterize the fragment mass
asymmetry of a fission event ¥y /M), where My and Mj,
are the masses of the heavy and light fission fragments respec
tively. For the purpose of grid generation for the potential
energy calculation it is convenient to relate a mass-asytmyme
shape degree of freedom for the pre-scission nucleus to the
final fission-fragment mass asymmetry in some fashion, al-

‘lljl Q, ~ Elongation (fission direction) though the final mass division, strictly speaking, cannot be
20 o, ~ (M1-M2)/(M1+M2) Mass asymmetry determined from the static shapes occurring before scissio
O

However, the exact nature of our definition of mass asymme-

155 & ~ Left fragment deformation try for a single shape has little effect on the calculatedikad

1D5 &, ~ Right fragment deformation point energies and shapes because our five-dimensional grid

15 d ~ Neck covers all of the physically relevant space available to the
T2 767 500 grid points — 156 615 unphysical points 3QS parameterization, reggrdless of how we choqse to dgfllne

0 2610 885 physical grid points a “mass-asymmetry” coordinate. In order to obtain a defini-

tion of mass asymmetry that is meaningful close to scission,
and equations that are reasonably simple to work with for the

Fig. 3 Five-dimensional shape parameterization used in the meseourpose of grid-point generation, we define an auxiliard gri
. ; mass-asymmetry parameter
potential-energy calculation

Different shades of gray indicate the three different gaadr My — M,
surfaces defined in the 3QS. The first derivative is continu- g = M, + M, 1)

ous where the surfaces meet. Note that we give the charge L
quadrupole momen@s in terms of >*°Pu with the same where M; and M, are the volumes inside the end-body

shape as the nucleus considered, so that the nuclear size gtfj_adratlc surfa}ces, were they completed to form closed-
fect is eliminated. The end body masses, or equivalently voisurface spheroids. Thus
umes,M; and M., refer to the left and right nascent frag-

2 2
ajcy — a3C2

ments were they completed to closed shapes. For the nascent Qg = a2, + aZe (2)
. - . 1 2C2

spheroidal fragments we characterize the deformations by ! 2

Nilsson’s quadrupole parameter. where a denotes the transverse semi-axis anthe semi-

symmetry axis of the left (1) and right (2) quadratic surface
of revolution. With this definition we select 20 coordinagd-v
ues corresponding to

(the identical) configuration of separate, but just toughin

spherical daughter fragments. ag = —0.02...(0.02)...0.36 (3)

We have closely spaced the asymmetry coordinate so that we
will be able to spot favorable saddle-point shapes that neay n
Because fragment shell effects strongly influence the struappear in a more sparsely spaced grid. #8Pu the values
ture of the fission potential-energy surface long before-sci0.00, 0.02, and 0.36 of the mass-asymmetry coordinate
sion, often in the outer saddle region, it is crucial to in<correspond to the mass divisions 120/120, 122.4/117.6, and
clude in calculations the nascent-fragment deformatians 463.2/76.8, respectively.
two independent shape degrees of freedom. In addition, Because of the intuitive appeal of the notatitiy /M|, we
elongation, neck diameter, and mass-asymmetry shape dee it below to characterize the “asymmetry” of a single shap
grees of freedom are required, at a minimum, to adequatélye then connect/y; andMr, to o, through
describe the complete fission potential-energy surface. Fo
nascent-fragment deformations we choose spheroidal-defor Mg=A
mations characterized by Nilsson’s quadrupelearameter.
This single fragment-deformation parameter is sufficiest b for a nucleus withA nucleons. For shapes with a well-
cause higher-multipole shape-degrees of freedom arelysualeveloped neck the ratio obtained with this definition can be
of lesser importance in the fission-fragment mass region bexpected to be close to the final fragment mass-asymmetry ra-
low the rare earths. tio. We cannot conveniently usd; and /> to designate the

I1l1. ShapeParameterization
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Calculated:
80 - o Heavy fragment B 80 - ]
r -<- Light fragment r
60 1 1 1 1 1 1 1 60 1 1 1 1 1 1 1
246 250 254 258 246 250 254 258
final fragment mass asymmetries because they do not exactly Fissioning System Mass Number

sum up to the total nuclear volume or mass. Equation (4) sim-
ply represents a scaling @f; andM> so that their sum after Fig. 5 Calculated and measuréd® average mass division in asym-

scaling adds up to the total mass numHer metric fission for sequences of even isotopes of Th, U, Pu,
We have performed several multi-million grid-point cal- Cm, Cf, and Fm

culations for different regions of nuclei, down tSe. For The error bars on the calculated points correspond to the spa
fission-fusion potential-energy surfaces in the superpeav ing of mass asymmetry values on the multidimensional shape-
element region we have extended the range of the mass-  coordinate grid. The data is for spontaneous fission when it
asymmetry coordinate ta;, = 0.66. The corresponding is available, otherwise data for low-energy induced fissson
deformation space consisted 8637478 deformation grid used. The results reproduce the experimental observation o
points when 33 different elongationg{) were considered. a heavy fragment at mass numbér~ 140 and a light frag-

ment with mass corresponding to the remainder of the oriigina

nucleus. However, deviations from this rule of thumb are als
It is a common misconception that the structure of a multi- reproduced by the calculations.

dimensional potential-energy function can be determined b

calculating and displaying the function versus two shape va

ables, for examplej, and 83 where the function has been

“minimized” with respect to additional multipoles such/s In addition, itis of interest to note that in calculationsavh

Bs, B¢ and ;. Such approaches are not even approximatethe potential energy is displayed as contour diagrams sersu

correct. No such “local” strategy will correctly identifpgddle  two shape variables and in which the energy is minimized with

points in multidimensional spaces as is extensively dsedis respect to additional multipoles, only relatively few ptsiare

in Refs15-17) required to perform a minimization with respect to, say, 3 ad
It is also a common misconception thebnstrained self-  ditional multipoles, about 30 or so. If the two-dimensional

consistent calculations, for example HF or HFB calculacontour diagram is based on 10 by 10 points then 8rl§0

tions with Skyrme or Gogny forcés?3) automatically take points are considered in the calculation. In contrast, we fin

into account all non-constrained variables. For the applicthat to adequately investigate the structure associatbdive

tion to saddle-point determination this is incorrect. Afsel simultaneous shape-degrees of freedom alh686 000 grid

consistent calculation constrained in one variable, fangple  points, thatis, 1006mes more points than earlier calculations

Q-, would have difficulties similar to those discussed abovepurporting to be multi-dimensional are required.

IV. Analysisof Five-Dimensional Spaces



The techni Wi here to investigate the structure of
N E.EC. qug € use he e. 0 INves gag e_ structure '?ablel Macroscopic model parameters of the FRLDM (1992) and
the multidimensional surface is to employ imaginary water o ) . . .
6,24) : . . . obtained in the present adjustment using barrier heights ob
flows'® 24 in the calculated 5-dimensional potential-energy o T ) .
. . . . tained in our five-dimensional calculation
surface. For example, we imagine that we stepwise flood, in

intervals of 1 MeV, the second minimum with water. Dur- Constant FRLDM (1992)  Current fit
ing the flooding process we check at what water level a pre- ay 16.00126 16.02444
selected “exit” grid point that is clearly in the fission \&jl Kou 1.92240 1.94149
near scission gets “wet”. When this happens, then the wa- as 21.18466 21.39654
ter level has passed the threshold energy level for fissian. W Ks 2.34500 2.36891
can determine the saddle-point energy to desired accusacy b ao 2.61500 1.08654
repeating the filling procedure with successively smalieps Ca 0.10289 0.16197

wise increases of the water level. The saddle-point shape ca
also be obtained from this procedure.

Once the threshold energies for fission have been identified,
it is of interest to establish if structure effects in theguatal  for **’Th it peaks at 1.56 MeV. Fof**U the ridge only rises
energy provide a mechanism for multi-mode fission, such &8arginally above the entrance saddle to the symmetricyvalle
the well-known three-peaked mass distributior?ifiRa fis- For still heavier systems such &Pu we find that the sym-
sion® To look for such structures we ask if there are valley§hetric valley emerges as a “side valley” to the asymmetric
of distinctly different character running in the fissionatition ~ valley at some point beyond a single outer saddle at the be-
of increasingy.. For 10 or more fixed), values beyond the ginning of the asymmetric valley. Calculated features ef th
outer saddle region, we determine all minima in the remainirfive-dimensional potential-energy surface f&tTh are illus-
4-dimensional space of the two fragment deformations, neé@ted inFig. 4.
size and mass asymmetry. We find that there are usually two In our calculated potential-energy surfaces we can for each
(but sometimes more) distinct valleys in the region beyded t nuclide determine the value of the mass-asymmetry coordi-
second saddle point, one corresponding to a mass asymmétgfe g at the bottom (minimum) of the asymmetric valley.
a, of about[140 — (A — 140)]/A and one corresponding to This value is almost independent@& from'slightly beyond
mass symmetry, = 0. To understand the significance ofthe outer saddle to scission; to be specific we use below the
these valleys it is necessary to study their interconnestio Mass asymmetry a, = 100 in our comparisons. As dis-
the five-dimensional deformation space. cussed above we can directly relate this coordinate to thé fin

Variations of the flooding algorithm allow us to determinéheavy and light fragment massgf; and M. In Fig. 5 we
that separate saddle points provide entries to the twoygallecompare heavy and light fragment masses calculated in this
and the respective energies of these saddle points. Once WY With experimental data. The mean deviation between cal-
lowest saddle has been determined we may block the wafgfations and experimentis only 3.0 nucleons.
flow across this saddle by building an imaginary dam across e have also calculated outer barrier heights and compared
the saddle region. We can also totally block the water flofhem to experimental barrier heights for 31 nuclei frétge
beyond a selected maximu@,. This prevents water from t0 *>*Cf, cf. Fig. 6. Because fission saddle points in our
flowing down one valley and up “the back way” into the othefive-dimensional deformation spaces are systematicaigto
valley. To determine the height of the ridge between the twian in earlier, lower-dimensional spaces a readjustnfeheo
valleys along their entire length we study for each fixgd macroscopic-model constants is necessary to avoid system-
the remaining 4-dimensional space in which the two Va||eygtic errors in the calculated fission-barrier heights. Weehe
correspond to two minima and the ridge to the saddle separ&€rform such a readjustment in a manner similar to how our
ing them. We use the flooding algorithm in four dimension§RLDM (1992) constants were determin€dl.Only 6 con-

to locate this saddle/ridge. stants are varied; the others remain unchanged. A compariso
between the old and the preliminary new constants is found
V. Calculated Results in Table 1. In the FRLDM (1992) the mass-model error was

. . .0.779 MeV, and the barrier rms error was 1.40 MeV. We now
In general our calculated potential-energy surfaces é@xhib’; | " : X
. : . . obtain a mass-model error of 0.759 MeV, and a barrier rms
a complex structure with multiple minima, maxima, saddle : . .
. i L error of 1.08 MeV for a larger and slightly different barrier
points and valleys. Structures significant in fission are ex; . ! . .
. . . . _data set. Because there is a change in barrier deformations

tracted by use of the water immersion techniques outlin

o . i - or the new set of constants, an iterative procedure is redui
above. For nuclei in the radium through light actinide re- . X
. . . .~ ~“to determine a final set of FRLDM model parameters (new
gion we find consistently that beyond the second minimum

the potential-energy surfaces are dominated by two Va”esgddle—pomt deformations have to be calculated with the ne

) . T arameters, parameters must be redetermined, and so on). We
leading to symmetric and asymmetric division into two frag:

xpect th nver results of h an iteration will i
ments. The two valleys are separated from the second mip.Pect the conve gedresults of such an iteratio ried

imum by different saddle points and from each other by a et too much from the first iteration presented here.

ridge. We find that fo??®Ra the ridge peaks at 2.47 MeV Finally we give a result from our study of SHE fission-
) fusion potential-energy surfaces for the compound system
above the entrance saddle to the symmetric valley, wher

€#9110. For heavy ions with = 208 and A = 62, Q- at



50 ;IIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIII§ In Summarya Wlth Our Comple':e: flve-dlmen3|onal Ca|CU-
E 3 lations of potential-energy surfaces, (1) we obtain réalis
40 ;— / / FRLDM (2001) —; multi-mode potential-energy surfaces that correlate etjos
E 3 with the multi-mode fission data seen in experiments, (2) we
30 g 3 calculate accurately the average mass asymmetries in asym-
- E E metric fission, (3) we obtain observed barrier heights for fis
% 20 E ° 3 3 sion barriers throughout the periodic system, and (4) fer su
s 10 3 3 perheavy systems we observe a shell-stabilized “colduisi
= E Experimental .5'.‘_’5 channel that persists to very compact shapes.
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