

Measurement of High-Energy Prompt γ-rays from Neutron-Induced Fission of ²³⁵U

Hiroyuki Makii

Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA)

- 1. Introduction
- 2. Measurement
- 3. Results and Analysis
- 4. Discussions
- 5. Summary

Collaborators

JAEA

Hiroyuki Makii, Katsuhisa Nishio, Kentaro Hirose, Riccardo Orlandi, Romain Leguillon, Tatsuhiko Ogawa

ILL

Torsten Soldner, Ulli Koester, Andrew Pollitt,

EU-JRC (IRMM)

Franz-Josef Hambsch

University of Manchester

Robert Frost

CSNSM Orsay

Guo Song, Alain Astier, Costel Petrache,

CENBG Bordeaux

Igor Tsekhanovich, Ludovic Mathieu, Serge Czajkowski, Mourad Aiche

LANL

Toshihiko Kawano

1. Introduction

Prompt fission γ-ray spectra (PFGS)

- Include valuable information
 - > Sharing the total excitation energy between two FFs
 - \triangleright Spin distributions, level densities, γ -ray strength functions, etc...
- Important for atomic energy applications.

PFGS measured for ²⁵²Cf(sf)

H. van der Ploeg et al., Phys. Rev. C, **52**, 1915 (1995).

To understand origins of enhancements, one need data for fission of other isotopes with different mass yield.

A. Hotzel et al., Z. Phys. A336 (1996) 299.

PFGS measured for (n_{th},f)

A. Oberstedt et al., PRC 87 (2013) 051602.

- Measurements are limited up to about 6 MeV
- Fragment mass dependence was not obtained

2. Measurement

Developed a new setup consists of detectors for FFs and γ -rays to measure the PFGS down to ~10⁻⁷ γ /fis./MeV @ 20 MeV

- \geq 10⁵ times larger sensitivity compared with previous measurements
- > Simple setup to measure the PFGS at any beam-line facility
- \rightarrow Large solid angle FF detector and large volume γ -ray detector
- > Capability being withstood against high counting rates
- \triangleright Ability being able to separate prompt γ -rays from neutrons
- \rightarrow Fast timing properties for both FF and γ -ray detectors

Our decision was to use

- > two position-sensitive multi-wire proportional counters (MWPCs)
- > two large volume LaBr₃(Ce) scintillators

Detectors for FFs and γ-rays

MWPC for FFs

Large area $(80 \times 80 \text{ mm}^2)$

Position sensitive

No radiation damage

Fast timing

LaBr₃(Ce) scintillators for γ -rays Large Volume (4in ϕ ×5in)

High-energy resolution

Fast timing

Response functions of LaBr₃(Ce) scintillator

Need to obtain PFGS from measured spectrum

 γ -rays from 27 Al(p, γ) 28 Si reaction (up to 10.76 MeV)

■ : Exp. Data

—: GEANT4

H. Makii et al. NIMA 797 (2015) 83.

2. Measurement

Observe γ-rays coincidence with FFs at the PF1b cold-neutron facility at Insitute Laue-Langevin (ILL), Grenoble, France

Measurement condition and statistics

- Neutron flux : $\sim 10^8$ n / cm² / s, $\phi 20$ mm
- Target: $^{235}UF_4$ (> 99.9 %, ϕ 30mm, 117 μ g/cm², 0.85 mg)
 - From EU-JRC (IRMM), Belgium
- Measurement time: 436.7 h
- Counting Rates for each detector
 - ➤ MWPC (FFs) : ~56 kHz
 - ightharpoonup LaBr₃(Ce) scintillator (γ -rays) : ~30 kHz (Threshold: 0.8 MeV)
- High throughput digital waveform processing system Output energy, timing, and pile-up events
 - \triangleright Dead time : 1 ~ 2 % for each MWPC and LaBr₃(Ce) scintillator
 - \triangleright Fraction of pile-up events : $\sim 0.03 \%$ of total events
- Registered events
 - \triangleright Two FFs in coincidence : 5.1 \times 10¹⁰
 - \triangleright γ-rays in coincidence with FFs : 1.7 × 10⁹

3. Results and Analysis

Total γ -ray events observed by one LaBr₃(Ce) scintillator

Almost all events are background due to scattered neutrons

3. Results and Analysis

Non-negligible amounts of time-independent background are seen₁₃

3. Results and Analysis

PFGS for $^{235}U(n_{th}, f)$

Unfolded net spectrum with response of LaBr₃(Ce) scintillators Energy calibration: 27 Al(n, γ) 28 Al, 28 Al(β ⁻), and 11 B(p, γ) 12 C

PFGS for $^{235}U(n_{th}, f)$

Unfolded net spectrum with response of LaBr₃(Ce) scintillators Energy calibration: 27 Al(n, γ) 28 Al, 28 Al(β ⁻), and 11 B(p, γ) 12 C

PFGS for $^{235}U(n_{th}, f)$

Unfolded net spectrum with response of LaBr₃(Ce) scintillators Energy calibration:²⁷Al(n, γ) ²⁸Al, ²⁸Al(β ⁻), and ¹¹B(p, γ) ¹²C

Hump structures are observed at E ~4, ~6 MeV and > 10 MeV

Fission Fragment Mass Distribution for ²³⁵U(n_{th}, f)

Derived from time difference between two FFs (flight pass: 50 mm)

Fragment Mass (amu)

 $[81 \le M \le 96] + [140 \le M \le 155]$ and $[97 \le M \le 116] + [120 \le M \le 139]$

Fragment-Mass Gated PFGS for ²³⁵U(n_{th}, f)

Humps correlated with $[97 \le M \le 116] + [120 \le M \le 139]$ are seen

4. Discussions

Compare the present PFGS with a theoretical model

Hauser-Feshbach model [K. Kawano et al., Nucl. Phys., A 913 (2013) 51.]

- Experimental TKE and Mass distribution → TXE distribution
- Initial spin (J) distribution
 (assumed same as the level density spin distribution)

$$R(J,\pi)=J+1/2/2\sigma 12 \exp\{-(J+1/2)12/2(f\sigma)12\}$$

- $\triangleright \sigma$: spin cut-off parameter
- $\triangleright f$: scaling factor to reproduce some observable quantities
- Competition between prompt neutrons and γ-rays
- Discrete level data: taken from RIPL-3
- Fully deterministic calculation (instead of MC technique)

A fairly good agreement was obtained at E < 12 MeV. A few isotopes contribute to the enhancement at E > 10 MeV. (86 Br, 109 Tc ... etc)

Initial spin distributions of FFs depend on spin cut-off parameter of

Large σ causes the increases of

- ullet Average J in initial spin distribution, and
- $R(J,\pi)=J+1/2/2\sigma 12 \ exp\{-(J+1/2)12/2(f\sigma)12\}$ ge σ causes the increases of verage J in initial spin distribution, and robability of finding a high spin state in low-lying levels of decaying FFs, • Probability of finding a high spin state But hinders neutron emission to the residual nucleus with small σ .
- \rightarrow High energy γ -rays might be emitted from the isotopes with large σ value

σ (spin cut-off parameter) dependence of the PFGS

As σ increases, fraction of the high energy γ -rays increases, and Many isotopes contribute to the enhancement at E > 10 MeV.

Reproduce the difference between spectra obtained by the gates at $[81 \le M \le 96] + [140 \le M \le 155]$ and $[97 \le M \le 116] + [120 \le M \le 139]_4$

Contributions from selected isotopes

Isotopes around N=82 contribute to 4 and 6 MeV hump structures 25

Comparison with ²⁵²Cf(sf)

5. Summary

- High efficiency set up for measurement of PFGS was developed.
- PFGS for $^{235}U(n_{th},f)$ were measured **up to 20 MeV**.
- PFGS do not decrease linearly with energy on logarithmic scale, but reveal a broad hump at E > 10 MeV.
- Hump structures were also observed around 4 MeV and 6 MeV.
- Calculation using Hauser-Feshbach model was compared to the present PFGS
 - > Hump at E > 10 MeV originates from a few isotopes with the large spin cut-off parameter (86 Br, 109 Tc, and ...).
 - Fraction of high-E γ -rays (E > 10 MeV) strongly depends on the spin cut-off parameter (initial spin distribution of FFs)
 - ➤ Isotopes in the vicinity of ¹³²Sn contribute humps around 4 and 6 MeV.

Measurement - setup

²³⁵U target

MWPC1 **Neutron beam**

Al Window (0.5mm)

Determination of g-ray spectrum for ${}^{11}\mathrm{B}(\mathrm{p},\gamma){}^{12}\mathrm{C}$

Stripping method

Unfolding Method

$$\upsilon(E) = \mathbf{R}^{-1} S(I)$$

 υ (E) : γ-ray spectrum

R : Response matrix

S(I): observed yield at ch I Unfolding was performed with a program "TUnfold" [S. Schmit, JINST 7 (2012).]

Unfolding method was used to obtain the PFGS for ²³⁵U(n_{th},f)

Coincidence between FFs and γ-rays

Correlation between TOF of γ-ray events and pulse height of LaBr₃(Ce)

