
Lawrence Livermore National Laboratory 

A Microscopic Theory of Fission (part I) 

DRAFT Version 1 

 
FIESTA 2014 Summer School 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. !

W. Younes 

Physics



2 LLNL-PRES-xxxxxx!

"it is conceivable that the nucleus breaks up into several 
large fragments, which would of course be isotopes of 
known elements but would not be neighbors of the 
irradiated element.” – Ida Noddak (1934)!

“Problems worthy of attack prove their worth 
by hitting back” – Piet Hein!

80 years later, there is still a 
lot we don’t understand  
about fission!!
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A complex problem that has spawned different lines of attack 

Statistical scission-point models (1970’s-)!

Microscopic models (1980’s-)!

All these approaches (and others) bring valuable insights into what is 
arguably the most challenging problem in nuclear physics!

Liquid-drop model (1939-)! + shell corrections!

J. Randrup and P. Möller, !
Phys. Rev. Lett. 106, 132503 (2011)!

S. Panebianco et al., !
Phys. Rev. C 86, 064601 (2012)!

•  Fragment yields!
•  Fragment kinetic 

energies!
•  Fragment excitation 

energies!
•  Fission probabilities!
•  Fission cross sections!
•  Fission times!
•  Scission neutrons!
•  …!
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What is the microscopic approach? 

Effective nucleon interaction!
(parameters)! Hamiltonian!

Particle densities!

PES!

Inertia tensor!

…!

Idea of microscopic approach:!

Effective interaction is the only phenomenological input!
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The hierarchy of the microscopic approach 

§  Starting point is effective interaction between nucleons 
•  Finite-range, fit a-priori, to very few nuclear data 

§  Simplest treatment of nucleon correlations is Mean Field 
•  Valid if nearby excitations ≫ residual interaction (e.g., magic nuclei) 
•  Otherwise true wave function mixes with nearby excitations 

§  Introduce correlations into Hamiltonian via successive improvements 
1.  Htrue ≈ HMF    (Hartree-Fock) 
2.  Htrue ≈ HMF + Vpair    (Hartree-Fock-Bogoliubov) 

3.  Htrue ≈ HMF + Vpair + Vcoll   (Generator-coordinate method) 

4.  Htrue ≈ HMF + Vpair + Vcoll + Vcoll-intr  (GCM + qp excitations) 

5.  … 

Tractable approach to a microscopic treatment of fission!
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Features of the microscopic approach useful for fission 

§  Ingredients: protons, neutrons, and an effective interaction between them 
§  The spatial distribution of nucleons is a result, not an input 

•  Found by minimizing the energy 
•  In a fully microscopic approach, no parameters depending on A, Z, or 

the configuration of the nucleus 
•  Important in fission since the system explores very exotic “shapes” 

§  Unified description of both single-particle and collective dof 
•  Mean field constructed from nucleon dof 
•  Residual interactions between nucleons can then cause this mean field 

to oscillate , generating a spectrum of collective states 
§  Starting point is Hamiltonian of A interacting nucleons 

•  Quantum mechanics is built in from the start 

But there are major challenges…!
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Challenge 1: we don’t have a fundamental theory of the nucleon-
nucleon interaction 

We do not yet have a nuclear interaction completely derived from QCD!

Although important progress is being made in that direction!
(see, e.g., http://www.cenbg.in2p3.fr/heberge/EcoleJoliotCurie/coursannee/cours/D_lacroix.pdf)!

For now, we use an effective interaction, with parameters adjusted to data!
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Where do effective interactions come from? 

§  Realistic NN interactions cannot be used directly in many-body calculations 
because repulsive core prevents perturbative approach 

§  Brueckner & Goldstone devised a way to carry out the sums of infinite 
numbers of terms that account for the two-body interactions 

§  Inside the nuclear medium, Pauli exclusion limits the number of states that 
two nucleons can scatter into and prevents divergences due to the core 
•  Thus the problematic bare interaction is replaced by a well-behaved “G 

matrix” describing the scattering of two nucleons inside the medium 
•  The G matrix is the most important example of an effective interaction 

for the nucleus 
•  Inside infinite nuclear matter, the Brueckner-Goldstone prescription can 

be calculated numerically and guides both the form and parameter 
values for the phenomenological effective interactions that are 
commonly used 
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Effective interactions 101 

§  The N-N interaction is modified by its presence inside a nucleus 
§  Can be approximated by simple functional forms 

•  Delta function ⇒ zero range 

•  Gaussian ⇒ finite range 

 
- More computationally demanding than delta 
-  Avoids mathematical pathologies of delta 
-  This is what I will use for the rest of this lecture 

V r1,
r2( ) ~ δ

r1 −
r2( )

V r1,
r2( ) ~ e−

r1−
r2( )2 /µ2

For simplicity, I have not written all the terms.!
There are a dozen free parameters from those terms!

T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956) !

D. Gogny, in “Nuclear self-consistent fields”, 
p. 333 (1975)!
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Fixing the parameters of the interaction 

§  Parameters adjusted to a small number of quantities 
•  Infinite nuclear matter 
-  Saturation properties (E/A and kF) 
-  Incompressibility K∞ 

-  Asymmetry parameter 
•  Semi-infinite nuclear matter 
-  Surface coefficient 

•  Finite nuclei 
-  Binding energies of 18O and 90Zr 
-  Energy difference 1p1/2 – 1p3/2 in 16O 
- Odd-even mass differences in a few Sn isotopes 
-  Barrier height in 240Pu 

Important: not tuned to fission observables!!
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Challenge 2: Fission is a difficult quantum many body problem 

For 240Pu fission: distribute 94 protons & 146 neutrons 
on 3D spatial lattice + spin, 20 fm to the side, 1 fm 
spacing ⇒ 203×2 = 16000 lattice points: 
!
!
!
!
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Sizing up the problem with a simplistic calculation:!
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Challenge 2: Fission is a difficult quantum many body problem 

For 240Pu fission: distribute 94 protons & 146 neutrons 
on 3D spatial lattice + spin, 20 fm to the side, 1 fm 
spacing ⇒ 203×2 = 16000 lattice points: 
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Sizing up the problem with a simplistic calculation:!

§  Too complicated to describe with full many-body wave function 
⇒  Start with simplified picture, restore complexity in order of importance 
⇒  Need High Performance Computing 
⇒  Need to solve some tough conceptual problems 

•  What are the relevant degrees of freedom? (collective vs. intrinsic) 
•  How does the coupling between them affect fission? 
•  What is scission? How do we separate pre- and post-scission? 
•  … 



13 LLNL-PRES-xxxxxx!

The Hartree-Fock approximation 

§  The full many-body wave function has too many terms 

§  There are two commonly used solutions 
•  The shell model: reduce the number of terms by restricting the number 

of states and nucleons to a few outside a closed shell 
•  The Hartree-Fock approximation: replace Ψ with a simpler form: 
-  Single Slater determinant, choose the one that minimizes the energy 
-  e.g., for a system of 2 nucleons: 

Ψ = cconfig config
all configs
∑ number of terms ~ states

nucleons

!
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This is not the most general form for Ψ(1,2,….): we are sacrificing 
some particle correlations for the sake of tractability!
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Solving the Hartree-Fock equations 

Image from commons.wikimedia.org!

§  From the Slater 
determinant, we calculate a 
one-particle density ρ 

§  From ρ we calculate a 
potential energy 

§  From the potential energy 
we get single-particle states  
φn ⇒ Slater determinant 

⇒  Hartree-Fock eqs are 
derived by a variational 
method and solved by an 
iterative process 

⇒  Independent particles in a 
mean field, system in its 
lowest-energy state 
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Important aspects of the energy calculation 

mean-field energy =
state 2
∑

state 1
∑ Effective!

interaction!

state 1! state 2!

state 2!state 1!

Also includes exchange terms:!

Effective!
interaction!

state 1! state 2!

state 1!state 2!
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Important aspects of the energy calculation 

mean-field energy =
state 2
∑

state 1
∑ Effective!

interaction!

state 1! state 2!

state 2!state 1!

pairing energy =
state 2
∑

state 1
∑ Effective!

interaction!

state 1!

state 1!

Mean field and pairing 
involve different states, 
but the same effective 
interaction!

Also includes pairing:!



17 LLNL-PRES-xxxxxx!

Important aspects of the energy calculation 

§  The energy sum extends over all states in the nucleus 
§  But if you want to distinguish parts of that nucleus, you can always re-

arrange the terms in the sum: 

§  The same effective interaction can be used to calculate the energy of 
•  The whole 
•  The parts 
•  The interaction between the parts 

This will be particularly useful when we discuss scission later on!!

Total energy =!

Energy of A! Energy of B! Interaction energy 
between A and B!
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Constrained Hartree Fock 

Example:!

§  Two minima in potential 
§  How do we reach both minima with Hartree Fock? 
§  Add a constraint to the minimization process via the 

method of Lagrange multipliers: 

δ HF Ĥ −λQ̂ HF = 0

In fact, with constraints we can explore the entire potential energy curve 
(and not just the minima)!
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Example of constraints: quadrupole and octupole moments 

240Pu!

Q20!

Q30!

Q30!

∣Φ(q⟩ = mean-field 
solution at q = {Q20,Q30}!

Q̂m = Ym
* θ,φ( )rρ

x( )d3x∫

Q20 controls “stretching” of nucleus!
Q30 controls mass asymmetry!
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Example: ground state of 240Pu 

§  Initial state = Slater 
determinant on deformed 
harmonic oscillator basis 

§  Density settles rapidly into 
ground-state configuration 
(variational methods love 
minima!) 
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Example: deformed state of 240Pu with Q20 = 200 b  

§  Starting point is ground 
state solution: 

§  Need constraint on Q20 

§  Converges much more 
slowly 

§  Note mass asymmetry 
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Example: deformed state of 240Pu with Q20 = 380 b  

§  Starting point is Q20 = 200 b 
solution: 

§  Need constraint on Q20 

§  Converges very slowly 
§  Note that we have reached 

scission! 
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Excitation mechanisms of the nucleus 
Not a nucleus, but will do for now!

Simplest: particle-hole excitation!

More complex configurations can be built from 
a multitude of simpler particle-hole excitations!

Collective motion in a “classical” movie:!

then! then! then…!
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The “quantum” movie of large-amplitude collective motion 

§  All frames for all possible flight paths and all possible configurations exist 
at the same time 

§  The “brightness” of each frame is what changes as a function of time 
§  All these frames, each with its own brightness, are shown at the same time 
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Building collective motion from single particles: the nucleus 

From ascr-discovery.science.doe.gov!
Credit: A. Staszczak et al., ORNL!

§  Each point on map is a single-particle 
configuration: HFB ⇒ 𝚽(q) 

§  The nucleus explores many such 
configurations ⇒ form linear 
superposition of 𝚽(q): 

 
 
§  Use variational procedure to 

determine the weights ƒ(q) 

Ψ = dq f q( ) Φ q( )∫

§  This is the Generator Coordinate Method (GCM) first proposed by Hill & 
Wheeler in Phys. Rev. 89, 1106 (1953) 

§  A truly quantum-mechanical description of collectivity built from single-particle 
degrees of freedom 
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Calculations using the GCM 

GCM wave function:! Ψ = dq f q( ) Φ q( )∫ Variational principle:! δE = δ
Ψ H Ψ

Ψ Ψ
= 0&!

Numerical Example: harmonic oscillator!
!
•  Vary weights f(q) smoothly!

•  Look for stationary values in energy!

⇒  Spectrum of collective states!

For more complicated H, this is not practical!
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Calculations using the GCM 

GCM wave function:! Ψ = dq f q( ) Φ q( )∫ Variational principle:! δE = δ
Ψ H Ψ

Ψ Ψ
= 0&!

Let’s look at the Hamiltonian overlaps for the harmonic-oscillator example:!

And switch to coordinates:!

q ≡ q+ "q
2

δq ≡ q− "q
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Calculations using the GCM 

GCM wave function:! Ψ = dq f q( ) Φ q( )∫ Variational principle:! δE = δ
Ψ H Ψ

Ψ Ψ
= 0&!

Let’s look at the Hamiltonian overlaps for the harmonic-oscillator example:!

And switch to coordinates:!

q ≡ q+ "q
2

δq ≡ q− "q

Expand overlaps to 2nd order in 𝜹q!
•  For harmonic oscillator expansion is 

exact, otherwise it’s an approximation!
⇒  Schrodinger-like equation!
⇒  Collective Hamiltonian!
•  In particular, curvature near 𝜹q = 0 is 

related to inertia of collective system!
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Application of the GCM: collective spectrum of 240Pu in (Q20,Q30) 

Potential 
surface:!

Inertia 
tensor:!

Collective Hamiltonian:! Collective 
spectrum!

Collective 
wave function!
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Fission dynamics: the Time-Dependent Hartree-Fock method 

§  In general: |Ψ(t)> = exp(-iHt/) |Ψ(0)> 
•  For H = full many-body Hamiltonian, this is too difficult! 

§  Time-dependent Hartree-Fock (Bogoliubov) 
•  Start with Slater determinant, assume it stays a Slater determinant 
•  From variational principle: 
 
•  The good:  
-  introduces internal excitations through particle collisions 
-  no need to choose collective coordinates a priori, the system finds 

its path on the energy surface 
•  The bad: 
-  Classical behavior (system follows a single trajectory) 
-  Can’t tunnel (due to conservation of energy) 
-  Spurious final state interaction 

δ dt Ψ i ∂
∂t
−H Ψ

t1

t2

∫ = 0 With 𝚿 a Slater 
determinant!
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Some developments in TDHF as a tool for fission 

§  J.W. Negele et al., Phys. Rev. 17, 1098 (1978) 
•  Calculated 236U induced fission times, compared with different 

dissipations/viscosities. Found fission times of 3-4×10-21 s 
§  K. Dietrich and J. Nemeth, Z. Phys. A 300, 183 (1981) 

•  Studied fission of slabs of nuclear matter 
§  J. Okolowicz, et al., J. Phys. G 9, 1385 (1983) 

•  Compared calculations with one- or two-center Slater determinants 
§  A. S. Umar et al., J. Phys. G 37, 064037 (2010) 

•  TDHF with constrained density, applied to the study of fission following 
heavy-ion collisions (e.g., 100Zr + 140Xe) 

§  D. Lacroix, Phys. Rev. C 73, 044311 (2006): Stochastic TDHF: quantum 
jumps between Slater determinants 

§  I Stetcu et al., Phys. Rev. C 84, 051309 (2011): time-dependent density-
functional theory 

Could TDHF provide insight into the relevant degrees of freedom throughout the fission process?!
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Fission dynamics: the time-dependent GCM 

Ψ t( ) = dq f q, t( ) Φ q( )∫Replace the GCM ansatz with:!

Variational principle + 2nd order 
expansion in non-locality !

§  To obtain microscopic, time-dependent picture of fission: 
•  Calculate potential energy surface, inertia tensor, and initial state 
•  Solve time-dependent collective Schrodinger equation 

§  See: J.-F. Berger et al., Comp. Phys. Comm. 63, 365 (1991); H. Goutte et al., 
Phys. Rev. C 71, 024316 (2005) 

δ dt Ψ i ∂
∂t
−H Ψ

t1

t2

∫ = 0
With 𝚿 a superposition of  
Slater determinants (or 
HFB states)!
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Application of the GCM: fission dynamics for 240Pu 

log g t( )
2

Potential 
surface:!

Inertia 
tensor:!

Initial state!
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Coupling between intrinsic and collective excitations in fission 

§  Develop GCM on a basis that includes intrinsic excitations 

§  Leads to generalized, non-adiabatic, Hill-Wheeler equation 
§  Can be reduced to Schrodinger-like equation 

•  Coupling between HFB minima and excited states is treated explicitly 
§  This promising approach is in development 

•  See Bernard et al., Phys. Rev. C 84, 044308 (2011) 

Ψ = dq f0 q( ) Φ0 q( )
HFB minima
 ∫ + dq fi q( ) Φi q( )

excitations
∫

i≠0
∑
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Recap: the microscopic approach so far 

Effective nucleon interaction!
(parameters)!

Single-particle 
Hamiltonian!

HFB!

Constraints!

𝚽(q)!

GCM! 2nd order in 
non-locality!

Collective 
Hamiltonian!

TDGCM!

Time-evolution 
of the nucleus!
Toward…!

𝚽(q)!

𝚽(q)!

We’re missing a crucial ingredient: scission!



See, e.g.,!
J.-F. Berger et al., Nucl. Phys. A502, 85 (1989)!
H. Goutte et al., Phys. Rev. C 71, 024316 (2005)!
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The nucleus near scission 

230Th!

Microscopic calculation of the final stages of fission!
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The nucleus near scission 

230Th!

but calculate the nuclear 
interaction energy between 
fragments in last panel:!
!
Eint = -68.3 MeV!
!
Not negligible!!
!
In fact, look as a function of 
fragment separation:!

So where does 
scission occur?!
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The nucleus near scission 
230Th! (Note: log scale)!

Left fragment! Right fragment!

§  The nucleon wave functions are delocalized, i.e., the fragments have tails! 
§  Tails are small but venture deep into complementary fragment! 

•  Keep in mind: total nuclear energy of 230Th in G.S. ~ -6.6 GeV 
•  Each particle in tails contributes ~ -50 MeV to nuclear interaction 

between fragments 
§  We are dealing here with the non-local nature of quantum mechanics! 
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The quantum localization problem in a simple model 

§  In QM, the double-well potential gives rise to delocalized orbitals (see, e.g., 
R. Gilmore, “Elementary Quantum Mechanics in One Dimension”, JHU 
press (2004)) 

 

 

This is not a numerical issue, a basis problem, or a problem that is unique to 
nuclear fission: it is a direct consequence of the non-local nature of QM!

Well localized!

Not so well localized!
⇒ tails!!



41 LLNL-PRES-xxxxxx!

The quantum localization problem in a simple model 

§  In QM, the double-well potential gives rise to delocalized orbitals (see, e.g., 
R. Gilmore, “Elementary Quantum Mechanics in One Dimension”, JHU 
press (2004)) 

 

 

Moving the wells apart does seem to reduce the tails: problem solved?!
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The quantum localization problem in a simple model 

§  In QM, the double-well potential gives rise to delocalized orbitals (see, e.g., 
R. Gilmore, “Elementary Quantum Mechanics in One Dimension”, JHU 
press (2004)) 

 

 

When accidental degeneracies occur, the tails come back!!
This is what happens in the fission problem!
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The concept of Localized Molecular Orbitals (LMOs) 

Sir John Lennard-Jones, Proc. Roy. Soc. A 198, 14 (1949):!

For fission: choose representation (i.e. transformation) that is appropriate to scission!!

Let’s go back to our simple example 
and mix the two degenerate states 
with a rotation through angle 𝜽!

This is in the spirit of the “Localized 
Molecular Orbitals” used in molecular 
physics to construct physically 
meaningful orbitals (e.g., core, valence, 
bond) from delocalized Hartree-Fock 
solutions.!
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The nucleus near scission: quantum localization 

§  Remember: before quantum 
localization 
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The nucleus near scission: quantum localization 

§  Now: find a unitary 
transformation that reduces 
the tails 

⇒   we can describe fission up 
to scission, and beyond 
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Younes & Gogny, Phys. Rev. Lett. 107, 132501 (2011)!

We have a quantum-mechanical definition of scission!!
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The quantum-mechanical definition of scission 

1)  Coulomb force >> nuclear attraction between pre-frags (e.g., × 30) 

2)  Exchange interaction is small (e.g., < 1 MeV) 
⇒  To good approx, can neglect antisymmetry between fragments 
⇒                       for all quantities of interest (energies, moments,…) 

3)  Can excite local set of 2-qp states on each fragment 

Fragments are separate entities, with their own excitations, and 
interacting only through a repulsive force acting only on their respective 
centers of mass!

€ 

˜ 0 ≈ ˜ 0 
1
× ˜ 0 

2
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Calculating fission yields 

Recall the discussion of the TDGCM!

We have a wave packet evolving toward the 
scission configurations!
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We need better collective coordinates near scission 

§  We want scission point for each mass division 
§  Traditionally: Q30 used to explore different mass divisions 
§  In practice: there isn’t a one-to-one relation between Q30 and A 
§  As the nucleus nears scission, local constraints (constraints on the 

individual pre-fragments) become important 
§  So, instead of Q20 and Q30, we work with: 

d!

A1! A2!

d ≡ z2 − z1

ξ ≡
A2 − A1
A
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The scission line in the new coordinates 

One nucleus!

Two nuclei!

Scission line = boundary!
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How do we get the probability of populating the scission points? 
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240Pu collective levels from GCM! Time evolution of probability current!
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How do we get the probability of populating the scission points? 

240Pu collective levels from GCM! Time evolution of probability current!
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Fission dynamics: 239Pu(n,f) mass distributions for En = 0-5 MeV 
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Microscopic calc!

Schillebeeckx (92)!
GEF code,!
Schmidt et al. (11)!

Younes et al., Proc. 
ICFN5, p. 605 (2012)!
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Fission dynamics: 235U(n,f) mass distributions for En = 0-5 MeV 
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Microscopic calc!

Straede (87)!

Younes et al., Proc. 
ICFN5, p. 605 (2012)!
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Pre-neutron fission yields for 229Th(nth,f) 

80 100 120 140 160
Fragment mass
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Experiment (Unik73)
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Starting from protons, neutrons, and effective interaction:!
Results consistent with experiment!!
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Calculating fragment energies 

§  Static contribution, After quantum localization of pre-fragments: 
•  Identify scission configurations: 
•  Integrate energy density for each fragment separately, allow each to 

relax to its minimum energy, difference gives excitation energy 
•  Coulomb energy gives kinetic energy 

§  Dynamic contribution (pre-scission energy) 

Q!

ECN!

Epre ⟶ kinetic!

Ediss ⟶ excitation!

Eint ⟶ kinetic!
Edef(1), Edef(2) ⟶ excitation!

From dynamic 
calculations!

From static 
calculations!

How do we partition the contribution from dynamics?!
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Pre-scission energy: a simplified example 

Consider a potential surface!
•  Flat in x direction!
•  Parabola in y dir!
Inertia tensor!
•  Large in x dir!
•  Small in y dir!
•  Zero in x-y!

And an initial wave function!
•  Wave train in x dir!
•  Harmonic oscillator in y dir!

The probability current 
shows that the motion is 
not entirely in the x dir!!
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Pre-scission energy: a simplified example 
Repeat with same initial form of the wave function with same total 
energy, inertia tensor nonzero only in x dir ⇒ 1D propagation in x dir!

Notice also that the 1D wave is slightly faster:!

For fission, we can deduce the pre-scission kinetic energy 
from the energy difference between 1D and 2D, but how can 
we find this energy difference?!

2D wave!

1D wave!
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Pre-scission energy: a simplified example 
Repeat with same initial form of the wave function with same total 
energy, inertia tensor nonzero only in x dir ⇒ 1D propagation in x dir!

In this simple case, we know (by construction) that!
•  For 2D wave: KEx = 4.97 (in arbitrary units)!
•  For 1D wave: KEx = 6.02 (in arbitrary units)!
But in the realistic case, how do we find this?!
!
One way is to sit at a point (e.g. x = 30, y = 0) and 
measure the flux in the x direction:!
•  More flux ⇒ more kinetic energy!
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Pre-scission energy: a simplified example 
Repeat with same initial form of the wave function with same total 
energy, inertia tensor nonzero only in x dir ⇒ 1D propagation in x dir!

In this simple case, we know (by construction) that!
•  For 2D wave: KEx = 4.97 (in arbitrary units)!
•  For 1D wave: KEx = 6.02 (in arbitrary units)!
But in the realistic case, how do we find this?!
!
One way is to sit at a point (e.g. x = 30, y = 0) and 
measure the flux in the x direction:!
•  More flux ⇒ more kinetic energy!

We can even quantify this: if the 2D wave looks like a 
plane wave in the x direction then!
1.  We calculate the normalized flux in x dir (flux divided 

by squared amplitude) at the measurement point!
2.  This normalized flux is constant in time!
3.  WKB gives the relation!

normalized flux 2D
normalized flux 1D

=
KEx 2D( )
KEx 1D( )
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Pre-scission energy: a simplified example 
Repeat with same initial form of the wave function with same total 
energy, inertia tensor nonzero only in x dir ⇒ 1D propagation in x dir!
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We deduce: KEx = 4.96!
!
Compare to actual value 
= 4.97!
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Pre-scission energy: the more realistic case 

§  If we find a state with a normalized flux at a scission point that is constant 
in time, we can use the approach just described 

§  In fission calculations, the x coordinate will be the separation distance 
between pre-fragments 
⇒ We can identify KEx with the kinetic energy of the pre-fragments at 

scission (i.e., the pre-scission energy) 
§  We invoke energy conservation to say that the remaining energy is 

transferred to collective modes of the pre-fragments 
§  These collective modes are not eigenstates of the final fragments 

•  They will evolve in time as the fragments de-excite 
•  That de-excitation energy will appear as neutron and 𝜸 emission 

•  We are still missing some physics: More collective & Intrinsic 
(quasiparticle) d.o.f.!

•  For now: excitation energy we calculate is a lower bound!
•  Calculations in (d,ξ) for most probable fission in nth+239Pu is consistent with 

50/50 split between kinetic and excitation from dynamic contribution !



62 LLNL-PRES-xxxxxx!

Calculated fragment kinetic and excitation energies for 239Pu(nth,f)  
Calculated pre-scission energy due to collective coupling + expected additional few MeV 
at least from collective-intrinsic (great unknown, see Bernard et al. PRC 84, 044308) ⇒ 
50/50 split of saddle-to-scission energy between kinetic and excitation is not unreasonable 
(not too different from estimates by others, e.g. Gönnenwein):!

Calculated TKE and TXE using our scission criterion & 50/50 split from dynamic contribution!
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TKE and TXE assuming different split of excitation/kinetic 
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Assuming 50/50 split!
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Results for 235U(nth,f): fragment kinetic and excitation energies 

Starting from protons, neutrons, and effective interaction:!
Results consistent with experiment!!
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Results for 229Th(nth,f): fragment kinetic and excitation energies 

Starting from protons, neutrons, and effective interaction:!
Results consistent with experiment!!
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Conclusions: summary 

§  Ongoing program to develop a microscopic theory of fission, starting from 
protons, neutrons, and an effective interaction between them 

§   Starting point is mean-field approximation, followed by a hierarchical 
restoration of correlations beyond the mean field 

§  Progress in understanding scission within a quantum-mechanical 
framework 

§  Time-dependent formalism gives the dynamics of fission 
§  Today: calculation of multiple fission observables (fragment yields, 

fragment kinetic and excitation energies,…) within a single, self-consistent 
framework. 

§  Tomorrow: ? 
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Conclusions: future outlook for theory 

•  Current effective interactions contain density-dependent terms 
-  Need to move beyond this to fully non-local interactions 

•  What are the appropriate degrees of freedom throughout the fission 
process? 
-  How do they evolve? 
-  Can TDHF help? 

•  Calculate coupling between collective and intrinsic d.o.f., and its effect 
on fission observables 

•  Project wave functions to recover symmetries (e.g., angular momentum, 
particle number,…) 
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Experimental data needs 

§  Need multi-parameter measurements, 
especially as a function of incident energy 
•  Fragment yields & kinetic energies 
•  Neutron energies & multiplicities 
•  Gamma energies & multiplicities 
⇒ Reconstruct nuclear state at scission 

§  Need measurements that directly probe 
fission dynamics 
•  Scission neutrons 
•  Fission times (with caveats) 
•  Muon-induced fission 
•  … 
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Additional work on microscopic theory of fission 

§  Scission configurations and their implication in fission-fragment angular 
momenta (L. Bonneau et al., Phys. Rev. C 75, 064313 (2007)) 

§  Self-consistent calculations of fission barriers in the Fm region (M. Warda et 
al., Phys. Rev. C 66, 014310 (2002)) 

§  Microscopic description of fission in uranium isotopes with the Gogny 
energy density functional (R. Rodríguez-Guzmán & L.M. Robledo, Phys. 
Rev. C 054310 (2014)) 

§  Fission half-lives of superheavy nuclei in a microscopic approach (M. 
Warda & J. L. Egido, Phys. Rev. C 86, 014322 (2012)) 

§  Microscopic calculation of 240Pu scission with a finite-range effective force 
(W. Younes & D. Gogny, Phys. Rev. C 80, 054313 (2009)) 

§  Fission barriers at high angular momentum and the ground-state rotational 
band of the nucleus 254No (J.L. Egido and L.M. Robledo, Phys. Rev. Lett. 
85, 1198 (2000)) 
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Additional work on microscopic theory of fission (cont) 

§  Microscopic study of 240Pu: Mean field and beyond (M. Bender et al., Phys. 
Rev. C 70, 054304 (2004)) 

§  Microscopic transport theory of nuclear processes (K. Dietrich et al., Nucl. 
Phys. A832, 249 (2010)) 

§  J. Erler et al., “Fission properties for r-process nuclei”, Phys. Rev. C 85, 025 
802 (2012) 

§  A. Staszczak et al., “Microscopic description of complex nuclear decay: 
Multimodal fission”, Phys. Rev. C 80, 014309 (2009) 

§  H. Abusara et al., “Fission barriers in actinides in covariant density 
functional theory: the role of triaxiality”, Phys. Rev. C 82, 044303 (2010) 

§  N. Dubray et al., “Structure properties of 226Th and 256,258,260Fm fission 
fragments: Mean-field analysis with the Gogny force”, Phys. Rev. C77, 
014310 (2008) 
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Useful reviews and books 

§  J.F. Berger, “La Fission: de la phénoménologie à la théorie”, Ecole Joliot-
Curie (2006)  (in French) 

§  H.J. Krappe and K. Pomorski, “Theory of Nuclear Fission”, Lecture Notes in 
Physics 838 (2012) 

§  J.F. Berger “Approches de champ moyen et au dela”, Ecole Joliot-Curie 
(1991)  (in French) 

§  M. Bender et al., “Self-consistent mean-field models for nuclear structure”, 
Rev. Mod. Phys. 75, 121 (2003) 

§  E. Moya de Guerra, “The limits of the mean field”, Lecture Notes in Physics 
581, 155-194 (2001) 

§  W. Greiner and J. A. Maruhn, Nuclear Models, Springer (1996) 
§  J. A. Maruhn, P.-G. Reinhard, E. Suraud, Simple Models of Many-Fermion 

Systems, Springer (2010) 
§  P. Ring & P. Schuck, The Nuclear Many-Body Problem, Springer (1980) 


