

# **Fission Experiments**

Or: How I Learned to Stop Worrying and Learn to Love Fission

#### **Fredrik Tovesson** Los Alamos National Laboratory

UNCLASSIFIED



## Outline

- Introduction
- Experimentally studied properties of fission
- Experimental facilities
- Detectors
- State of the art and future developments



# **Discovery of nuclear fission**

- Ida Noddack suggested that uranium nuclei might break up under neutron bombardment in 1934.
- Hahn and Strassmann, 1938: Neutron irradiation of uranium produces barium.
- Communicates results to Lise Meitner, who is in Sweden as a war refugee.
- Lise Meitner and her nephew Otto Frisch explains the result as nuclear fission, makes estimate of energy release.
- Frisch uses uranium-lined ionization chamber and radium beryllium source to confirm fission. [Nature 143, p. 276 (1939)]
- Hahn receives the Nobel price in chemistry in 1944 for the discovery of fission



Slide 3



UNCLASSIFIED



### **Cross sections**

- Fissility of isotopes
  - Fissile = no threshold for neutron induced-fission
  - Fissionable = has threshold energy for neutron-induced fission
  - All the other isotopes that won't fission no matter what
- Neutron energy regions
  - Thermal
  - Resonance region
  - Unresolved resonance region
  - Fast region
  - Multiple-chance fission = fission following neutron emission



Slide 5



UNCLASSIFIED

#### **Fission fragment mass**





J. Lestone, Nuclear Data Sheets 112, 3120 (2011)

EST 1943

- Actinides generally exhibit asymmetric mass distributions, with small symmetric component
- Heavy peak about the same for all actinides, light peak shifts to make up for difference in compound system mass
- Relative contribution from symmetric fission increases with increasing excitation
  energy
  UNCLASSIFIED
  Slide 6

#### **Fission fragment charge**







- F. Gönnenwein, Physics Procedia 47, 107 (2013)
- Fission fragment charge distributions exhibit strong odd-even effects
- Effect decreases with increasing mass of the fissioning system



#### **Fission fragments – kinetic energies**



- Most energy released in fission is in the form of kinetic energy of the fission fragments
- Total kinetic energy (TKE) release is about 160-180 MeV (on average)
  - Decreases with increasing incident neutron energy more energy goes to excitation of fragments
  - TKE distribution have a FWHM of about 25 MeV
- Light fragment has more narrow distribution of kinetic energies than heavy fragment



### **Fission fragment angular distributions**

- Fission fragments angular distributions are generally not isotropic in neutron-induced fission
- Experimental data often presented at anisotropy (w(0)/ w(90))
- Detailed measurements in 1950s of several isotopes, 0-10 MeV

J. E. Simmons et al., Phys. Rev. 120, 198 (1960)



#### **Prompt Neutrons**

N. Nereson, Los Alamos Sci. Lab. Report #LA-1078 (1950)



- Average number of prompt neutron emitted = 2.5
- Average energy = 2 MeV
- Energy distribution well described by Watt function





#### Prompt gamma rays

Chyzh et al., Physical Review C 85, 021601 (2012)



#### **Neutron facilities – reactors**

- Reactors are intense sources of thermal neutrons
  - ILL high-flux reactor produces 10<sup>15</sup> neutron per cm<sup>2</sup> and second in the moderator region
- Some experiments can only be performed at reactors
  - The Lohengrin fission product spectrometer provides excellent data, but low efficiency require high fission rates
- Disadvantage of reactor experiments is that we often want to study changes in the fission process as a function of excitation energy







## **Neutron facilities – mono-energetic**

- Mono-energetic neutrons can be made through several reactions
  - Li(p,n)
  - <sup>2</sup>H(d,n)<sup>3</sup>He
  - <sup>3</sup>H(p,n)<sup>3</sup>He
  - − <sup>3</sup>H(d,n)<sup>4</sup>He
- Van de Graaff accelerators are often used to produce mono-energetic neutrons
  - Example: 7 MV VdG at IRMM, Geel, Belgium
    - Produces mono-energetic neutron beams from 0.1 to 24 MeV
- Other accelerators, such as cyclotrons, are also used to produce monoenergetic neutrons
  - Example: The Svedberg Laboratory, Uppsala Univ., Sweden
    - High energy mono-energetic neutrons made through Li(p,n)



# Neutron facilities – time-of-flight

- White spectrum of neutrons is produce by pulsed beam
- Energy of neutrons are determined by measuring the time-of-flight (TOF) over some flight path
- Electron beam facilities
  - GELINA
    - Linear electron accelerator, 100 MeV, 800 Hz repetition rate, 10 ns wide pulses
    - Uranium target: electron beam produces bremsstrahlung, photonuclear reactions make neutrons
    - Flight path lengths are 10, 30, 50, 60, 100, 200, 300 and 400 meters
- Spallation facilities
  - Neutrons produced when high energy ion beam hits high-Z material
  - Makes neutrons ranging from 0 to hundreds of MeV
  - LANSCE-WNR
    - 800 MeV proton beam on tungsten (wolfram) target
    - Flight pats 6 25 meters
    - 1.8 us repetition rate -> lower neutron energy limit is about 100 keV
  - N\_TOF
    - 20 GeV proton beam hit lead target
    - 20 and 200 meter flight paths
    - 0.5 Hz repetition rate -> usable neutron spectrum for thermal to hundreds of MeV



#### Fragment detectors – gas





#### **Fragment detectors – ion chambers**





Slide 16

- Parallel plate ionization chambers
  - Signal proportional to energy and angle
  - Fragments don't range out
  - Good alpha particle to fission separation
- Bragg chamber (Frisch-gridded)
  - Anode shielded by grid
  - Signal directly proportional to energy, independent of angle
  - The grid signal can be used to measure particle emission angle

UNCLASSIFIED



# Fragment detectors – proportional counters





- Parallel Plate Avalanche Counter (PPAC)
  - 30% energy resolution for fission
  - Very fast timing response (<1ns)</li>
- Muli-wire proportional chamber (MWPC)



#### **Fragment detectors – TPC**





- Provides 3D particle tracking
- Energy resolution of few percent



#### Fragment detectors – Surface barrier

- Relative good energy resolution for fission fragments: 2%
- Higher pulse height defect compared to gas detectors
- Sometime segmented to provide position information
- Solar cells have been used to detect fission fragments low cost fission trigger



Passivated Implanted Planar Silicon (PIPS) Detector from Canberra

Slide 19

UNCLASSIFIED





### **Fission fragment – Time-of-flight**

A.V. Kuznetsov, Nucl. Inst. Meth. A 452, 525 (2000)



- Time signal can be obtained by detecting the secondary electrons produced when fission fragments pass through thin film
- Micro-channel plates (MCP) commonly used to detect secondary electrons due to fast timing response (0.2-2 ns rise time)

ATIONAL LABORATORY

EST.1943

UNCLASSIFIED



#### **Mass separators**

 Masses are selected using electromagnetic fields





Slide 21

lamos

NATIONAL LABORATORY

EST.1943 -





#### **Neutron detectors – High Energy**

- Plastic or liquid scintillators are used to detect fast neutrons
- Neutrons interacts with protons in the scintillating material
- Photons undergo Compton scattering on electrons
- The charged particles excite molecules in the scintillator, and they subsequently de-excite by emitting visible light
- The photons cases a cascade of electrons in the photomultiplier tube through the photo-electric effect
- Some scintillators, such as NE213, exhibit different signal decay times for neutrons and photons, which can be used to separated the two types pf radiation



#### **Neutron detectors – Low energy**



- Shortage of <sup>3</sup>He is effecting availability
  - Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Pulse Size (energy deposited in detector)

2.79 MeV

Slide 23

ATIONAL LABORATORY

EST 1943

# State of the art and future development

- Inverse kinematics
  - Excellent mass and charge resolution
  - GSI measurements
  - New spectrometer
  - FRIB
- 2E-2v instruments
  - Some masses and charges resolved
  - Cosi-fan-tuti (1980's)
  - SPIDER, STEFF, VERDI, ...
- Time projection chambers (TPC)
  - Tracking opens up new possibilities
  - New technology brings cost down
- New neutron facilities
  - N\_Tof
  - LANSCE with pulse stacking

UNCLASSIFIED

Slide 24



#### **Inverse kinematics - GSI**



- 1 GeV U-238 beam fragmented on lead target
- Secondary fragment species identified in terms of A and Z
- Fragment beam hit second lead target, undergoing coulomb fission with 11 MeV excitation energy on average
- The fragments were identified in terms of Z using dE/E
- Gives access to large number of fissioning systems in one experiment
- Demonstrates the regions on the nuclear map where transition from asymmetric to symmetric fission occur



#### K.H. Schmidt et al., NPA **665**, 221 (2000)



#### **Inverse kinematics – SOFIA**





G. Boutoux et al., Physics Procedia 47, 166 (2013)

UNCLASSIFIED

Inverse kinematic with mass and charge identification of fission fragments



# 2E-2v – Cosi-fan-tutte



#### N. Boucheneb et al., NPA 502, 261 (1989)

- Neutron induced fission
- Energy and velocity of fragments measured
- Light fragments resolved





NATIONAL LABORATORY

EST.1943

UNCLASSIFIED



#### 2E-2v - SPIDER





 Development ongoing to reduce energy straggling in windows







TOF Data and Simulation



Slide 28

NATIONAL LABORATORY

EST.1943

 $\mathbf{O}$ 

UNCLASSIFIED



# 2E-2v - STEFF

- 2E-2v spectrometer combined with gamma-ray detectors
- Currently at ILL
- Plan to run at n\_TOF
- Mass resolution 3%





Slide 29

NATIONAL LABORATORY

EST.1943 -



## The fission TPC



- Developed for high precision cross sections
- Other potential uses
  - Ternary fission
  - Angular distributions



Slide 30

IATIONAL LABORATORY

EST 1943

OS

M. Heffner, D.M. Asner, R.G. Baker, *el al.*, *A Time Projection Chamber for High Accuracy and Precision Fission Cross Section Measurements*, **submitted to Nucl. Instr. and Meth**.

UNCLASSIFIED





#### **Questions?**



