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Fission Dynamics within the Macroscopic-Microscopic Approach

Shortly after the discovery of nuclear fission [1], it was recognized that the phenomenon
can be viewed as an evolution of the nuclear shape from that of a single compound nucleus
to that of two receding fragments [2, 3]. This conceptual framework, when combined with
the macroscopic-microscopic approach to the calculation of nuclear energetics, provides a
powerful and quantitatively useful theoretical tool for studies of low-energy fission dynamics.
These lectures give an introduction to the treatment of nuclear fission dynamics within the
macroscopic-microscopic approach.

The first lecture discusses the general features of the problem, including the concept of
shape degrees of freedom and the formal framework for treating their dynamical evolution.
It will also describe the most common approach to calculating of the nuclear macroscopic-
microscopic potential energy of deformation.

The second lecture focuses on the dynamical evolution of the fissioning nucleus. The

inertial mass associated with the shape motion as well as the dissipative coupling between

the shape and the residual system will be discussed and recent advances in the treatment

of the nuclear dynamics will be highlighted, with particular emphasis on the simplifications

that arise when the dissipation is strong.
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1 Introduction

Various basic properties of nuclei of particular relevance to fission dynamics:

Nuclear saturation: The nucleon-nucleon interaction has a finite range with an attractive
component (mediated by the pion) and a short-range repulsion (mediated by heavier mesons).
Consequently nuclear matter saturates and nuclei are approximately incompressible as well as
leptodermous (have a thin skin): As a result, the nucleus can be regarded as having a shape.

Figure 1-1: The nuclear density profile for nuclei of

various mass number: The bulk region has a density

close to that of nuclear matter, and the nuclear surface

has a constant width that is substantially smaller than

the nuclear radius, w ≪ R ∼ A1/3.

Compound nucleus: The internal relaxation is much faster than the time scales characteristic
of the nuclear disintegration processes, so the microscopic degrees of freedom can be regarded
as being in approximate equilibrium [4].

Figure 1-2: Illustration of absorption of a neutron by

a nucleus: The impinging neutron (left) induces a cas-

cade of collisions that leads to a quick sharing its energy

among all the nucleons (from Ref. [5]). Part of the exci-

tation energy may later become concentrated on a single

nucleon, causing it to be emitted [4], or it may be con-

verted to deformation energy, allowing the nuclear shape

to develop beyond the fission barrier [3].

Shape dynamics: Nuclear fission can be understood as a dynamical evolution of the nuclear
shape [3], subject to both conservative and dissipative forces.

Figure 1-3: Schematic contour diagram of the

potential energy of deformation. Agitations of

the nucleus results in shape excursions away

from the ground-state minimum. If the exci-

taiton is sufficient, the shape motion will even-

tually traverse the fission barrier and nuclear

fission will result; its rate can be estimated

by statistical means (known as the transition-

state method). (From Ref. [3].)
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2 Formal framework for nuclear shape dynamics

The nuclear system is defined in terms of its shape. This is possible because the nuclear interac-
tion has a finite range and leads to saturation. As a consequence, the density of nucleons, ρ(r),
is rather constant in the interior of a large nucleus and falls off over a relatively short distance
at the surface. The task of theory is to describe the temporal evolution of the nuclear shape.

Figure 2-4: Reflection-symmetric

nuclear shapes relevant for fission,

starting from a single sphere and

ending with a scission shape.

The nuclear shape [Sect. 3] is specified by a set of shape parameters q ≡ (q1, . . . , qN ), often
referred to as the collective degrees of freedom. Generally, for any given total energy E, the
specification of q characterizes an entire ensemble of nuclear many-body states that all have
the energy E and whose spatial density distributions all correspond to the specified shape.
Assuming that all such states are equally likely, the system may be considered as being in
statistical equilibrium.

The calculation of the time evolution of the nuclear shape parameters, q(t), requires knowl-
edge of three distinct physical quantities:

1. Potential energy: [Sect. 4] The most basic quantity is the potential energy of a given
shape, U(q), i.e. the energy of the nuclear system when its shape is as specified by q. The
local gradient of the potential energy provides a driving force, F (q) = −∂U(q)/∂q, that
will seek to change the shape so that the potential energy is lowered. The minima in the
potential-energy surface of a given nucleus correspond to stable equilibrium shapes; the
lowest compact minimum represents the ground state and its energy is the nuclear mass.
Two-dimensional contour plots have intuitive appeal, displaying minima, ridges, saddle
points, and so on) but cannot bring out all important features of the N -dimensional space.

2. Inertial mass: [Sect. 5] A shape change is associated with a rearrangement of the internal
nucleonic configurations. The associated kinetic energy is assumed to be of normal form,
K = 1

2

∑N
i,j Mij q̇iq̇j, where M (q) is the N × N inertial-mass tensor which is symmetric,

Mij(q) =Mji(q). Thus M(q) consists of N × (N + 1)/2 independent functions of q.

3. Dissipation: [Sect. 6] The interaction between the collective degrees of freedom and the
remainder of the nuclear many-body system causes the shape variables to experience a
dissipative force characterized by the N ×N dissipation tensor γ(q), which is symmetric,
γij(q) = γji(q). Thus γ(q) consists of N × (N + 1)/2 independent functions of q.

If the shape evolution took place in isolation, i.e. if there were no coupling between the shape
variables q and the internal degrees of freedom, then the shape dynamics would be conservative.
The time evolution of the shape would then follow exclusively from the Lagrangian function,

L(q, q̇) = 1
2 q̇ ·M · q̇ − U(q) = 1

2

N
∑

i,j

q̇iMij(q) q̇j − U(q) . (2-1)
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The conjugate shape momentum p = (p1, . . . , pN ) is given in terms of q and q̇ as

pi(q, q̇) =
∂

∂q̇i
L(q, q̇) =

∑

j

Mij(q) q̇j : p(q, q̇) = M(q) · q̇ . (2-2)

This relation can be inverted to yield the velocity q̇ in terms of q and p,

q̇i(p, q) =
∑

j

Bij(q) pj : q̇(p, q) = B(q) · q , (2-3)

where the N × N matrix B(q) denotes the inverse of M(q), i.e.
∑

j Bij(q)Mjk(q) = δik. The
Lagrange equation of motion for the evolution of the shape momentum is

∂

∂t
pi

.
=

∂

∂qi
L(q, q̇) = 1

2

∑

jk

q̇j q̇k
∂

∂qi
Mjk(q)−

∂

∂qi
U(q) . (2-4)

The conservative shape dynamics can equally well be described within the Hamiltonian formal-
ism. The Hamiltonian function for the shape motion is given by

H(p, q) = 1
2p ·B · p+ U(q) = 1

2

N
∑

i,j

piBij(q) pj + U(q) (2-5)

and the Hamiltonian equations of motion are

q̇i =
∂

∂pi
H(p, q) =

∑

j

Bij(q) pj ,

ṗi = − ∂

∂qi
H(p, q) = −1

2

N
∑

j,k

pjpk
∂

∂qi
Bjk(q)−

∂

∂qi
U(q) = F cons

i = Fmass
i (p, q) + F pot

i (q) .

It is easy to verify that the Hamiltonian and Lagrangian equations of motion are equivalent (it
follows from the fact that

∑

jk pjpk∂Bjk/∂qi = −∑jk q̇j q̇k∂Mjk/∂qi). In either formulation, the 2-a
conservative force consists not only of the driving force provided by the potential, F pot(q) ≡
−∂U(q)/∂q, but has also contributions arising from the shape dependence of the inertial mass,
Fmass(q). If the shape motion were conservative, then the associated energy, Ecoll = H(p, q)
would remain constant in time.

However, there is a continual exchange of energy between the retained collective degrees of
freedom and the remainder of the system and, as a consequence, the shape cannot be considered
as an isolated system. Rather, it displays a dissipative evolution. The interaction of the shape
degrees of freedom with the remainder of the system is described by means of a residual force
which is dissipative, F diss(q̇, q). Its average exerts a friction force on the shape parameters q,

F fric(q, q̇) ≡ 〈F diss(q, q̇)〉 = −γ(q) · q̇ : F fric
i (q, q̇) = 〈F diss

i (q, q̇)〉 = −
∑

j

γij(q) q̇j . (2-6)

It can be obtained from the Rayleigh function F(q, q̇), equal to half the mean rate of dissipation,

F fric
i (q, q̇) = − ∂

∂q̇i
F(q̇, q) , F(q̇, q) = 1

2 q̇ · γ(q) · q̇ = 1
2

∑

ij

q̇iγij(q) q̇j . (2-7)
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The remainder of the dissipative force, F ran(q, t) ≡ F diss(q̇, q) − F fric(q̇, q) is stochastic in
nature. It is assumed to fluctuate rapidly in time and to be Markovian (i.e. it has vanishing
memory time), so its autocorrelation function is given by

〈F ran(q, t)F ran(q, t′)〉 = 2γ(q)T δ(t− t′) : 〈F ran
i (q, t)F ran

j (q, t′)〉 = 2γij(q)T δ(t− t′) , (2-8)

where T (q, q̇) is the temperature of the residual system [Sect. 2.1]. The fact that the mean and
the variance of the residual force are both proportional to the dissipation tensor is a manifestation
of the fluctuation-dissipation theorem (often referred to as the Einstein relation) which ensures
that the system equilibrates appropriately [Sect. 2.2].

The resulting complete equation of motion for the evolution of the shape parameters is then
given by the Langevin equation,

ṗ = F cons + F diss =
(

Fmass(p, q) + F pot(q)
)

+
(

F fric(q, q̇) + F ran(q, t)
)

. (2-9)

In this description, the conservative motion on the potential-energy landscape is subjected to
a steady damping caused by the friction force (which is the average effect of the residual cou-
pling) and, importantly, the shape trajectory q(t) exhibits continual random changes due to the
fluctuating part of the residual coupling. Because of this diffusive character of the evolution, a
specified initial shape automatically develops into an entire ensemble of (often very) different
shapes. Such occurrence of trajectory branching is a general feature of the transport descrip-
tion and it is a key advantage of this type of treatment because fission of a single compound
nucleus may have many macroscopically different outcomes (for example: different mass splits
and different fragment kinetic energies). In particular, without a diffusive term the equation of
motion could never lead to asymmetric fission if the initial nucleus had reflection symmetry.

Figure 2-5: Illustration of how a single

shape may develop into a multitude of

qualitatively different shapes due to the

coupling between the shape degrees of

freedom treated explicitly and those of

the residual system.

2.1 Temperature

The total energy of the evolving nuclear system, E, can be divided into collective and statistical
parts. In the absense of overall rotation (which we assume throughout here), the collective energy
consists of the potential energy of the given shape, U(q), plus the kinetic energy associated with
the rate of shape change, K(q, q̇),

Ecoll(q, q̇) = 1
2

∑

ij

q̇iMij(q) q̇j + U(q) . (2-10)

The remainder is the statistical energy,

Estat(q, q̇) = E − Ecoll(q, q̇) , (2-11)

from which the local temperature, T (q, q̇), can be obtained. For example, Estat(q) = aAT (q, q̇)
2

in a simple Fermi-gas model, where aA ≈ A/(8MeV) is the nuclear level-density parameter.
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2.2 Equilibration

The presence of the dissipative term in the Langevin equation of motion (2-9) is instrumental in
ensuring that a closed system develops towards statistical equilibrium. To illustrate this central
feature of the Langevin dynamical framework, let us consider a “particle” having a constant mass
m moving in a simple one-dimensional harmonic potential, U(x) = 1

2c0x
2, while in contact with

a thermal reservoir of temperature T ; let γ be the associated dissipation coefficient. The driving
force is then F pot = −∂U/∂x = −c0x, while the friction force is F fric = −γẋ, so the average
position x̄ = 〈x〉 evolves as a damped harmonic oscillator, m¨̄x+γ ˙̄x+c0x̄ = 0, and thus approaches
zero in the course of time, x̄(t) → 0. The random force satisfies 〈F ran(t)F ran(t′)〉 = 2γTδ(t− t′)
and produces fluctuations around the mean trajectory x̄(t). It is elementary to show that
〈x2〉 → T/c0 and 〈ẋ2〉 → T/m, consistent with the fact the evolving distribution function
P (x, ẋ, t) approaches that of thermal equilibrium, PT (x, ẋ) ∼ exp(−(mẋ2 + c0x

2)/2T ).

E < B

E ~ B

Figure 2-6: Schematic potential energy of defor-

mation U(Q) (the minimum energy at the speci-

fied quadrupole moment Q); the ground state is

at the minimum and the fission barrier is at the

maximum. When the total energy E is below the

barrier the shape distribution produced by the

Langevin equation approaches statistical equilib-

rium (sketched below the minimum). When the

energy is slightly above the barrier the shape at-

tains quasi-equilibrium inside the barrier, while

there is a slow leakage across the barrier towards

fission; the fission rate can be calculated statis-

tically leading to the transition-state expression.

In the Smoluchowski limit (Sect. 7.1) the dissipation is so strong that the inertial forces
are negligible, equivalent to putting the inertial mass to zero. The instantaneous velocity is
then given by ẋ(t) = µ[F pot(x) + F ran(x, t)], where the mobility coefficient is µ = 1/γ. The
distribution, P (x, t), satisfies the Fokker-Planck equation,

∂tP (x, t) = −∂xV (x)P (x, t) + ∂2xD(x)P (x, t) , (2-12)

where the transport coefficients satisfy the Einstein relation, V T = DF . In the harmonic case,
the drift coefficient is linear, V (x) = −µc0x = −x/t0, with t0 = γ/c0 being the relaxation time,
while the diffusion coefficient is constant, D = µT = T/c0t0. Then

d

dt
x̄ = V (x̄) = − x̄

t0
⇒ x̄(t) = x(0) e−t/t0 → 0 , (2-13)

d

dt
σ2 = 2D − 2

t0
σ2 ⇒ σ2(t) = Dt0(1− e−2t/t0) + σ2(0) e−2t/t0 → Dt0 = T/c0 . (2-14)

The mean position x̄ ≡ 〈x〉 relaxes exponentially, while the variance σ2 ≡ 〈(x − x̄)2〉 grows
linearly at early times, σ2(t ≪ t0) ≈ 2Dt. The distribution approaches equilibrium at late 2-b
times, t≫ t0, and if it is initially sharp then it remains a Gaussian at all times,

P (x, 0) = δ(x − x0) : P (x, t) =
[

2πσ2(t)
]− 1

2 e−[x−x̄(t)]2/2σ2(t) →
[

c0
2πT

]
1

2

e−c0x2/2T . (2-15)
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3 Shape families

Many different shape families have been employed in fission studies. In the present lectures, we
restrict the considerations to shapes that have rotational symmetry around the z axis (deviations
from such “axial” symmetry are known to play a significant role near the first fission barrier)
and we discuss just two of them here.

3.1 Expansion in Legendre polynomials

Axially symmetric shapes in the vicinity of a sphere can be described by R(ϑ), the distance
from the nuclear center to the surface. It is convenient to expand this function in Legendre
polynomials,

R(ϑ) = R0



1 +
∑

n≥1

αnPn(ϑ)



 /λ(α1, α2, . . .) , (3-1)

where the normalization constant λ ensures that the enclosed volume remains equal to 4
3πR

3
0.

Roughly speaking, α2 controls the quadrupole moment, α3 the mass asymmetry, and α4 the
neck thickness. While such parametrizations are very suitable for small distortions away from a
sphere, they grow progressively impractical as the fissioning nucleus develops large distortions
for which many terms would be required. (Eventually, as scission is approached, the approach
may even break down entirely because the function R(ϑ) may then no longer be single-valued.)

3.2 Three quadratic surfaces of revolution

In general, an axially symmetric shape can be characterized by ρ(z). In the 3QS parametrization,
the shape is given by three smoothly joined quadratic surfaces [6], so ρ2(z) is of the form

ρ2(z) =











L : a 2
1 − (a 2

1 /c
2
1 )(z − ℓ1)

2, z0 ≤ z ≤ z1 : ρ∂zρ = −(a 2
1 /c

2
1 )(z − ℓ1) ,

M : a 2
3 − (a 2

3 /c
2
3 )(z − ℓ3)

2, z1 ≤ z ≤ z2 : ρ∂zρ = −(a 2
3 /c

2
3 )(z − ℓ3) ,

R : a 2
2 − (a 2

2 /c
2
2 )(z − ℓ2)

2, z2 ≤ z ≤ z3 : ρ∂zρ = −(a 2
2 /c

2
2 )(z − ℓ2) .

(3-2)

where z0 ≡ ℓ1− c1 and z3 ≡ ℓ2+ c2. Whereas the left and right shapes are always spheroids and
thus have a 2

i > 0 and a 2
i /c

2
i > 0 for i = 1, 2, the corresponding quantities for the middle shape

may have either sign. When a 2
3 /c

2
3 < 0 the middle shape is either a hyperboloid of one sheet

(a 2
3 > 0), or a hyperboloid of two sheets (a 2

3 < 0). We are not concerned with disconnected
shapes here, but we note that shapes with a 2

3 /c
2
3 > 0 and a 2

3 < 0 may occur for fairly compact
shapes, so both a 2

3 and c 23 can have either sign for the family of connected 3QS shapes.
There are three parameters (ai, ci, ℓi) for each of the three sections, in addition to z1 and z2,

but these are not independent: the middle sections must join the two end sections smoothly (at
z1 and z2) and the nuclear volume must remain constant as its shape is changed. Nix introduced
the following independent parameters [6]. The overall volume is governed by the length scale
u given by 2u2 = a 2

1 + a 2
2 , while the shape itself is described by six dimensionless parameters,

three symmetric (σ1, σ2, σ3) and three asymmetric (α1, α2, α3),

σ1 =
ℓ2 − ℓ1
u

, σ2 =
a 2
3

c 23
, σ3 =

1
2

(

a 2
1

c 21
+
a 2
2

c 22

)

= 1
2

[

(

3− 2εf1
3 + εf1

)2

+

(

3− 2εf2
3 + εf2

)2
]

, (3-3)

α1 =
ℓ2 + ℓ1
2u

, α2 =
a 2
1 − a 2

2

u2
, α3 =

a 2
1

c 21
− a 2

2

c 22
=

[

(

3− 2εf1
3 + εf1

)2

−
(

3− 2εf2
3 + εf2

)2
]

, (3-4)
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Figure 3-1: The three-quadratic-surfaces shape family for mononuclei: The left and right parts are pieces

of spheroids with major and minor axes c1,2 and a1,2, centered at ℓ1,2; they are joined smoothly to the

middle section which is part of either an ellipsoid or (shown) a hyperboloid of revolution. [From [6].]

where the relationships between the shape parameters σ3 and α3 and the ε deformations of the
two spheroids are indicated for σ3 and α3. The addition of a common amount ∆ℓ to the three
parameters {ℓi} results merely in an overall translation of the systemby ∆ℓ along the symmetry
axis without any genuine shape change. Because the overall center of mass remains constant
during the shape evolution, there are only five independent ways that the shape can change, i.e.
the 3QS shape family is five-dimensional. One may think of these five shape degrees of freedom
as representing the following qualitatively distinct characteristics:

1. the overall elongation (which qualitatively corresponds to the quadrupole moment of the
nucleus, Q2;

2. the degree of central bulging or indentation (for compact shapes this qualitatively cor-
responds to the hexadecapole moment Q4, while it corresponds to the neck radius c for
shapes near scission);

3. the degree of deformation of the left spheroidal end part (described by the value of εf1);

4. the degree of deformation of the right spheroidal end part (described by the value of εf2);

5. and the degree of reflection asymmetry (corresponding qualitatively to the octupole mo-
ment Q3), often called the mass asymmetry.

These various shape degrees of freedom are expected to be the minimum required for an adequate
description of fission.

4 Potential energy

Studies of fission dynamics need to consider systems that have a finite temperature, T > 0
(see Sect. 2.1), but for the time being T is taken to be zero, so the potential energy U(q)
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is the energy of the lowest possible configuration of the nuclear system having the specified
shape q. It might seem desirable to calculate U(q) on the basis of a purely microscopic many-
body model. However, such approaches are generally computationally quite demanding and
therefore somewhat impractical (millions of different shapes need to be treated for each nucleus
considered, amplifying the computational burden very significantly). Moreover, it is generally
somewhat difficult to obtain the absolute energy with good accuracy because of the complicated
many-body interactions, though steady progess is being made. It is also somewhat complicated
to impose the specified shape within a microscopic treatment.

The macroscopic-microscopic method presents a relatively easy alternative calculational ap-
proach that takes advantage of a characteristic feature of nuclear properties that is well brought
out for nuclear masses: There is an overall smooth trend overlaid by relatively small undulatory
deviations from the average. The central idea is therefore to write the potential energy of a
nuclear system as a sum of a smooth term, Emacro(Z,N, shape), and a fluctuating correction
term, Es+p(Z,N, shape), that reflects the shell and pairing effects associated with the particular
level scheme at the specified shape,

U(Z,N, shape) = Emacro(Z,N, shape) + Es+p(Z,N, shape) . (4-5)

The two terms will be discussed separately below. The above decomposition is useful for general
shapes, whereas for masses it is often practical to use the macroscopic sphere as a reference,

U(Z,N, shape) = Emacro(Z,N, sphere) + Emicro(Z,N, shape) , (4-6)

because Emicro(shape) = Es+p(shape)+Emacro(shape)−Emacro(sphere) then represents all effects
over and above the spherical macroscopic energy (which would have been the ground-state energy
in the absence of structure effects). A concise introduction to the method was given in Ref. [7].

Figure 4-2: The nuclear mass defect versus

the nuclear mass number A for 97 β-stable

nuclei throughout the periodic table, as ei-

ther (scattered dots) measured experimentally

or (smooth solid curve) given by the nuclear

liquid-drop model (see Sect. 4.1). The overall

trend is globally well reproduced, also in the

light region, and the differences represent the

microscopic effects for individual nuclei (see

Eq. (4-6)). (From Ref. [8].)
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4.1 Macroscopic energy

In its simplest form, the expression for the macroscopic energy is based on the similarity between
an atomic nucleus and a charged liquid drop [9, 10],

Emacro = Evol +Esurf + Ecoul + Epair . (4-7)

The volume term is proportional to A and depends on the neutron-proton asymmetry through
a factor of the form 1− κ[(N − Z)/A]2, the surface term is proportional to A2/3, the Coulomb
term (∼Z2/A1/3) is the electrostatic repulsion between the protons, and the pairing term takes
account of the increased binding when the number of protons and/or neutrons is even.

For fission, the most important macroscopic terms are the surface energy and the Coulomb
energy which behave oppositely as the nucleus is deformed away from a sphere. A spheroid of
eccentricity e has Esurf(e) ≈ Esurf(0)[1+

2
45e

4] and Ecoul(e) ≈ Ecoul(0)[1− 1
45e

4], so there will be
a macroscopic fission barrier as long as Ecoul(0) < 2Esurf(0), which is the case up to Z ≈ 126.

A succession of refinements have been made over the years. We sketch here the finite-range

liquid-drop (FRLD) model [11, 12] which is being employed in modern calculations. The finite
range of the nuclear interaction is taken into account by a phenomenological method motivated
by the following considerations [13]:

1. For spherical configurations and large nuclei, the model should give roughly the same result
as the standard liquid-drop model;

2. The model should be less sensitive to high-multipole ripples on the nuclear surface;

3. Between two separated nuclei there should be, in addition to the Coulomb repulsion, an
attractive nuclear interaction, known as the proximity potential [14];

4. The model should be applicable to general shapes with reasonable computational effort.

The FRLD model describes the nuclear shape in terms of sharp generating distributions, ρ̂(r),
which are unity inside the specified shape and zero outside. The nuclear surface energy is then
obtained by use of a suitable smearing kernel g(r), such as a Yukawa function [13],

ES(χ) ∼ V0 −
∫

V (χ)
g(|r − r′|) d3r d3r′ , g(r) =

1

4πa3
e−r/a

r/a
. (4-8)

The range of the kernel g(r) should account both for the finite range of the nucleon-nucleon
interaction and the finite diffuseness of the nuclear matter distribution. Because the Yukawa
function does not saturate, it is preferable to use a slightly more complicated kernel (a Yukawa
plus an exponential) that leads to a surface energy with many desirable properties [15]. Such
a kernel is used in the explicit expressions on the next page. The shape-dependent Coulomb
energy is crrected for the diffuseness of the proton distribution by use of a similar kernel [16].

Once the macroscopic energy has been obtained, the microscopic theory is left with the much
simpler task of evaluating only that part of the total binding energy that fluctuates due to the
irregularities in the single-particle energy levels.
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Finite-Range Liquid-Drop Model

Emacro(Z,N, shape) = (4-9)

MHZ +MnN mass excesses of Z hydrogen atoms and N neutrons

−av(1− κvI
2)A volume energy

+as(1− κsI
2)B1(shape)A

2/3 surface energy

+a0A
0 A0 energy

+c1Z
2/A1/3 B3(shape) Coulomb energy

−c4Z4/3/A1/3 Coulomb exchange correction

+f(kFrp)Z
2/A proton form−factor correction to Coulomb energy

−ca(N − Z) charge−asymmetry energy

+W

(

|I|+
{

1/A, Z=N odd
0 , otherwise

})

×BW(shape) Wigner energy

+



















∆p +∆n − δnp, Z and N odd
∆p , Z odd, N even
∆n , Z even, N odd
0 , Z and N even



















average pairing energy

−aelZ2.39 . energy of Z bound electrons

The relative neutron excess is I=(N −Z)/(N +Z)=(N −Z)/A. The Coulomb coefficients are

c1 =
3
5

e2

r0
, c4 =

5
4

(

3

2π

)2/3

c1 ,

while the function f(kF rp) in the proton form-factor correction to the Coulomb energy is

f(kFrp) = −1
8

r2pe
2

r30

[

145

48
− 327

2, 880
(kFrp)

2 +
1, 527

1, 209, 600
(kFrp)

4
]

, kF =

(

9πZ

4A

)1/3 1

r0
.

The average pairing gaps are ∆n = rmacBs/N
1/3 and ∆p = rmacBs/Z

1/3 and δnp = h/BsA
2/3.

Furthermore, Bs is the area of the surface S of the specified shape, relative to that of a sphere,

Bs(shape) =
1

4πR2
0

∮

dS , R0 = r0A
1/3 ,

while B1 is the relative effective surface area due to the finite range,

B1(shape) =
1

8π2R2
0a

4

∫

V
d3r

∫

V
d3r′

(

2− |r − r′|
a

)

e−|r−r
′|/a

|r − r′|/a ,

and B3 is the relative Coulomb energy,

B3(shape) =
15

32π2R5
0

∫

V
d3r

∫

V
d3r′

1

|r − r′|

[

1−
(

1 + 1
2

|r − r′|
aden

)

e−|r−r
′|/aden

]

,

where V denotes the volume enclosed by the specified shape. More details are given in Ref. [11].
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4.2 Shell-plus-pairing energy

The shell-plus-pairing energy in (4-5) is the sum of separate contributions from neutrons and
protons which can be obtained from the respective single-particle levels {ǫnν} and {ǫpν}. These
are obtained by solving the Schrödinger equation,

[

− h̄2

2m
∆+ V n,p(r)

]

ψn,p
ν (r) = ǫn,pν ψn,p

ν (r) , (4-10)

where ∆ = ∇
2 = ∂2/∂r2 is the Laplace operator, in the effective single-particle potential,

V n,p(r) = V n,p
mf (r) + V n,p

so (r) + V n,p
C (r) . (4-11)

The mean-field, the spin-orbit, and the Coulomb terms for neutrons and protons are given by

Mean field : V n,p
mf (r) = −V n,p

0

∫

Ω
g(|r′ − r|) d3r′ , g(r) = 1

4πa3
e−r/a

r/a
, (4-12)

Spin−orbit: V n,p
so (r) = iλ

(

h̄

2mc

)2

σ · ∂V
n,p
mf (r)

∂r
× ∂

∂r
, (4-13)

Coulomb: V p
C (r) =

Ze2

4
3πR

3
0

∫

Ω

d3r′

|r′ − r| + finite−range corr. , V n
C (r) = 0 . (4-14)

The single-particle level schemes depend on the nuclear shape. The level distribution is
usually irregular and may exhibit significant gaps for particular shapes, often associated with
special geometrical symmetries, as illustrated in Fig. 4-3.

Figure 4-3: Energy levels in a three-dimensional

harmonic-oscillator potential well as functions of its

spheroidal deformation. When the potential is spher-

ically symmetric, the associated large degree of de-

generacy causes the energy levels to bunch,leading

to clearly defined major shells. As the potential de-

forms, some orbitals fit better into the spheroidal

cavity (namely those with motion predominantly

along the symmetry axis) and their energies decrease,

while the energy increases for orbitals that have pre-

dominantly transverse motion; this leads to a steady

erosion of the shell structure. However, when the

axis ratio attains a simple value (2:1, 3:1, ...) some

degree of degeneracy is reestablished and new shell

structures arise. (From Ref. [7].)
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Figure 4-4: Neutron (left) and proton (right) level diagrams (often called Nilsson diagrams) for 240Pu:

The single-particle energies plotted as functions of the (reflection-symmetric) distortion. [From Ref. [17].]
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Figure 4-5: Neutron (left) and proton (right) level diagrams for 105Zr: The single-particle energies

plotted as functions of the (reflection-symmetric) distortion. [From Ref. [18].]



Jørgen Randrup: FIESTA 2014 14

4.2 Shell effects

A simple quantitative metod for obtaining the shell energy was proposed by Myers and
Swiatecki [8] and further developed by Strutinsky [19]; it was further discussed in Ref. [20]. The
method is briefly outlined below for neutrons or protons. 4-a

The actual density of single-particle states is discrete, g0(ǫ) =
∑

ν gνδ(ǫ− ǫν), where gν is the
degeneracy of the level ν. [It is common to refer to the density of states as the “level density”,
even though it is incorrect (unless no levels are degenerate, gν = 1).] A corresponding smooth
density of states is obtained by averaging (or smearing) the actual single-particle level density
over an appropriate energy region,

g̃(ǫ) =
1

γ

∫ +∞

−∞
ξ

(

ǫ− ǫ′

γ

)

g0(ǫ
′) dǫ′ (4-15)

where ξ(ǫ/γ) is a suitable smearing function with an adjustable range γ. The Fermi energy λ
for neutrons or protons is determined by number conservation,

∫ λ

−∞
g̃(ǫ) dǫ

.
= N or Z . (4-16)

The shell energy for neutrons or protons is then given by

δEshell =

∫ λ

−∞
g0(ǫ) ǫ dǫ−

∫ λ

−∞
g̃(ǫ) ǫ dǫ =

∑

ǫν<λ

gνǫν −
∫ λ

−∞
g̃(ǫ) ǫ dǫ . (4-17)

Figure 4-6 shows the function δEn
shell(λ) for

208Pb:

Figure 4-6: For the neutron levels in
208Pb at a spherical shape are shown

the accumulated sum of the eigenvalues

and the corresponding smooth quantity,

both given in Eq. (4-17). The shell cor-

rection for the neutrons is the difference

between those two quantities. (From

Ref. [17].)

In nuclear fission, a compact mononucleus develops gradually into two separate nuclear
fragments. It is a significant advantage of the Strutinsky method that when the system has
acquired a distinct binary character, the extracted shell energy will reflect the level structure
in the individual fragments even though the calculation is done for the single-particle field
associated with the combined dinuclear system. 4-b
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4.2 Pairing

The nuclear pairing force plays an important role for nuclear properties at low energy, such
as binding energies, β-strength functions, and quasi-particle energies. In the macroscopic-
microscopic approach to nuclear energies, one needs the difference between the pairing cor-
relation energy associated with the actual single-particle states and that of the corresponding
average state density g̃(ǫ) (the same one used above to obtain the shell correction energy),

δEpair = Epair[g0] − Ẽpair[g̃] . (4-18)

for neutrons and protons separately. A variety of models have been employed for the calculation
of the pairing correlation energy [21, 22].

The simplest and most widely employed treatment of pairing is the Bardeen-Cooper-Schrieffer
(BCS) model. In a suitable region around the Fermi surface, ν1 ≤ ν ≤ ν2, it replaces the particles
by quasi-particles whose energies are given by

Eν =
[

(ǫν − λ)2 +∆2
]1/2

, (4-19)

and the probability that a particle state is occupied is given by v 2
ν = 1

2 [1− (ǫν − λ)/Eν ]. The
pairing gap ∆n,p and the Fermi energy λn,p are determined from the two coupled equations,

N orZ
.
= 2(ν1 − 1) + 2

ν2
∑

ν=ν1

v 2
ν ,

2

G
.
=
∑

ν

1

Eν
, (4-20)

where Gn,p is the pairing interaction strength for neutrons or protons and double degenerary is
assumed, gν = 2. The pairing correlation energy for neutrons or protons is then given by

Epair =
∑

ν

[2v 2
ν − nν ] ǫν −

∆2

G
− 1

2G
ν2
∑

ν=ν1

[2v 4
ν − nν ] + Eν θ

N,Z
odd , (4-21)

where nν = 0, 1, 2 are the occupancies of the doubly degenerate levels in the absence of pairing
and the last term is unity/zero if the number of neutrons or protons is odd/even.

Because the simple BCS model fails for large level spacings, it is sometimes replaced by
the Lipkin-Nogami approximation. At present [11], the macroscopic-microscopic calculations of
nuclear potential energies employ this refinement of the BCS model, which takes account of the
lowest-order correction to the total energy arising from the fluctuations in particle number.

Figure 4-7: Illustration of the BCS pairing treat-

ment: Without paring (left), the single-particle

states are fully occupied below the Fermi surface

(ǫν < λ) and empty above it (ǫν > λ); the pairing in-

teraction causes the states around the Fermi surface

to become partially occupied with the probability v2ν
(right). The pairing correction to the nuclear energy

is the difference between the pairing energy for the

actual level distribution and that for the correspond-

ing constant level density.
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4.3 Calculated results

The macroscopic-microscopic method has been used extensively for many years and has provided
quantatively useful results for a variety of nuclear properties, as very briefly illustrated below.

Figure 4-8: Approximate fission barriers for 188Os and 210Po: the potential energy along a preselected

sequence of ever more elongated shapes having reflection and axially symmetry. Both the total potential

(solid) and the macroscopic part (dashed) are plotted. For osmium the macroscopic barrier is so high that

the undulating microscopic corrections do not produce any additional extrema, whereas several appear

for polonium. For osmium Es+p is positive for the spherical shape so the ground state is deformed,

but the total microscopic contribution to the ground-state mass is small; for polonium Es+p is strongly

negative for a sphere so the ground state is spherical and has Emicro = Es+p. (From [17].)

Figure 4-9: The fission barrier for 240Pu: Left: The lowest potential energy as a function of the degree

of reflection-symmetric elongation (top) and the energy of the saddle point for a specified degree of

reflection asymmetry (bottom); both the total potential (solid) and the macroscopic part (dashed) are

plotted. Right: The nuclear shape at various stationary points in potential-energy landscape: the first

minimum, the first saddle, the second minimum, and the second saddle; the latter is symmetric if only

the macroscopic energy is considered (dashed), while the addition of the microscopic correction renders

it asymmetric (solid). (From [17].)



Jørgen Randrup: FIESTA 2014 17

The macroscopic-microscopic method has been particularly useful for making global calcu-
lations of nuclear masses. Within a suitable shape parametrization, the lowest potential-energy
minimum is located and identified with the nuclear ground state, for which the properties can
then be extracted, such as the shape and the binding energy.

Discrepancy (Exp. − Calc.) 

Calculated 

Experimental FRLDM (2012) 

σth = 0.6618 MeV 
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Figure 4-10: As a function of the neu-

tron number N are shown the micro-

scopic part of the nuclear mass defects

(which exhibit significant shell structure)

as obtained from experiment (top); as

calculated by the macroscopic-microscopic

method [11] (middle), which yields a glob-

ally very good reproduction of the data;

and the discrepancies (bottom) which are

about 0.67 MeV on average (recent model

enhancements have reduced the mean dis-

crepancy to ≈0.56 MeV). (From Ref. [11].)

The ability to calculate the nuclear potential energy for arbitrary shapes is of key importance
for fission studies. The most basic features of interest are minima and saddles.

!"#$%&'()&*#+,' -./0123'4'0%,5%67%#'89:;' :<'
!"#$%&'()&*#+,' -./0123'4'0%,5%67%#'89:;' :<'

Figure 4-11: An early depiction of the potential-energy landscape for 236U in a two-dimensional rep-

resentation using a combination of ε2 and ε4 distortions for the elongation and a combination of ε3 an

and ε5 distortions for the mass asymmetry [23], as seen either from above (left) or at an angle (right).

The ground-state minimum is located on the left and the isomeric minimum is near the center; both are

reflection symmetric and they are separated by the (also symmetric) first saddle. By contrast, the second

saddle (on the right) is asymmetric and has an energy significantly below the conditional symmetric

barrier (the mountain top on the right).
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In order to adequately describe the shapes explored by the fissioning nucleus, a sufficient
number of shape degrees of freedom are required (see Sect. 3). A five-dimensional tabulation
has been made of the potential-energy for more than five thousand nuclei [12]:

Q2

45 Q2 ~  Elongation (fission direction) 

15 ε
f1

~  Left fragment deformation

ε
f1

ε
f2

15 ε
f2

~  Right fragment deformation

15

⊗

⊗

⊗

⊗
d ~  Neck 

d

35 αg ~  (M1-M2)/(M1+M2) Mass asymmetry

Five Essential Fission Shape Coordinates

M1 M2

⇒   5 315 625 grid points − 306 300 unphysical points
⇒   5 009 325 physical grid points

Figure 4-12: The five-dimensional lattice in the

space of the center-of-mass conserving shape pa-

rameters for the three-quadratic-surface family

[6] introduced by P. Möller for the tabulation

of macroscopic-microscopic potential-energy sur-

faces [12]. Each shape is characterized by five

integers (IJKLM) which respectively govern the

overall quadrupole moment Q2, the neck radius

d, the left and right spheroidal deformations ǫf1
and ǫf2, and the reflection asymmetry αg. The

lattice thus contains more than five million dif-

ferent shapes, in addition to a number of shapes.

(From Ref. [24] as extended by Peter Möller.)

The potential-energy landscape may provide considerable insight into the fission process. For
example (as illustrated below in Fig. 4-13), it may be readily possible to anticipate whether a
particular system will fission symmetrically or not:
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Figure 4-13: The 5D potential energy surface for 180Hg and 236U reduced to a two-dimensional landscape

presenting some of its major features. There are important qualitative differences between the two cases:
236U displays a strong preference for a certain mass asymmetry and the associated valley develops rather

early; for 180Hg symmetric fission is blocked even more at small Q2, but at larger Q2 the landscape shows

no preference for any particular asymmetric split. One would then expect that the calculated fragment

mass distribution for 180Hg will show a larger sensitivity than 236U to the structure of the dissipation

tensor and possibly to that of the inertial-mass tensor as well. (From Ref. [25].)
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5 Inertial mass

The inertial mass associated with nuclear shape changes is still far from being well understood
and it is yet not possible to calculate inertial-mass tensors with an accuracy even remotely
approching that with which the potential can be obtained. Furthermore, while microscopic
studies have yielded valuable insight, such approaches tend to be very cumbersome and they
have not yet been carried out for the large number of shapes required for fission dynamics.

It has therefore been common to resort to simple fluid-dynamical considerations (even though
those may not be appropriate for nuclear shape dynamics at low energy where the nucleonic
mean free path is relatively long and, in addition, there may be special effects from pairing
correlations and shell structure). The kinetic energy is then given by

K(q, q̇) = 1
2m

∫

ρ(r)v(r)2 d3r = 1
2mρ0

∫ zmax

zmin

dz

∫ ρ(z)

0
2πρdρ [v⊥(ρ, z)

2 + v‖(ρ, z)
2] , (5-1)

where v‖(ρ, z) is the longitudinal component of the local flow velocity v(r) and v⊥(ρ, z) is
its transverse component. It is generally assumed that the nuclear flow is incompressible and
irrotational. As a further simplification, one often invokes the Werner-Wheeler approximation
which assumes that the fluid within a given transverse slice of the nucleus remains in that slice
as the shape changes (see Fig. 5-1). Then the longitudinal flow velocity of a given fluid element
does not depend on its distance ρ from the symmetry axis, v‖(ρ, z) = v‖(z), and the rate of local
expansion, v⊥(ρ, z), is proportional to ρ. As a result, the kinetic energy of the collective flow is
elementary to express in terms of the collective velocities {q̇i} and the associated mass tensor
elements Mij(q) can then be obtained. This has been done for the 3QS shapes by Nix [26, 27]
(though the resulting expressions are rather involved).

Figure 5-1: Illustration of the Werner-

Wheeler approximation to incompressible

and irrotational flow: The fluid remains

within the same slice as the nuclear shape

is changed. In the example shown, the slice

moves upwards as the nucleus is stretched, its

cross section becomes smaller, and it grows

correspondingly wider, retaining its volume.
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6 Dissipation

Because nucleons are fermions, an individual nucleon interacts with the remainder of the many-
body system primarily through the effective one-body field (the “mean field”), at the relatively
low energies of interest here. Furthermore, because of the leptodermous nature of nuclei, this
interaction is concentrated in the surface region (where the density and hence the effective
field vary most strongly). One may therefore expect that the dissipative coupling between the
nuclear shape and the residual system can be understood by considering the interaction of the
individual nucleons with the deforming one-body potential [28]. This type of dissipation is
dominant for systems in which the constituents have a long mean-free path and it is called one-

body dissipation because it can be derived on the basis on the effective one-body Hamiltonian
that governs the nucleonic motion in the mean field. It may be contrasted with the more familiar
fluid-dynamical dissipation (viscosity) which depends on the two-body interactions between the
constituents. Expressions for the one-body dissipation tensor can be derived by elementary
means for particularly simple nuclear geometries (Sects. 6.1 and 6.2).

One-body dissipation has two characteristic features that have important bearings on fission
dynamics; both of them arise because the nucleons form a highly degenerate Fermi gas at the
relatively low excitations of interest here:

1. Nuclear one-body dissipation is relatively strong because it is proportional to the mass
density of the nucleons and their mean speed and the latter is of the order of the Fermi
speed which is large compared to the typical surface motion;

2. Nuclear one-body dissipation is rather independent of the nuclear temperature because
the nucleonic speeds in a degenerate Fermi gas do not increase much with temperature.

Q̇wall = mρ0v̄

∮

U2
n d

2σ Q̇window = 1
4mρ0v̄ πc

2 (2U2
‖ + U2

⊥)

Figure 6-1: Illustration of the nuclear one-body dissipation mechanism: The wall dissipation acts when

nucleons are reflected off the moving wall of a deforming incompressible vessel (left), while the window

dissipation acts when nucleons transfer between two vessels in relative motion (right).
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6.1 One-body dissipation in a mononucleus

The standard wall formula for one-body dissipation in a mononucleus is given by [28]

Q̇wall(q, q̇) = mρ0v̄

∮

ṅ2d2σ =
∑

ij

q̇iγ
wall
ij (q)q̇j , (6-1)

where the integral is over the nuclear surface. Furthermore, m is the nucleon mass, ρ0 is the
bulk density of nucleons, and v̄ is the mean speed of the nucleons in the bulk. For an axially
symmetric surface defined by ρ(z, t), the normal velocity of the local surface element is [29]

ṅ =
∂ρ

∂t
/

[

1 +

(

∂ρ

∂z

)2
]1/2

=
∑

i

q̇i ρ
∂ρ

∂z

[

ρ2 +

(

ρ
∂ρ

∂z

)2
]− 1

2

. (6-2)

The elements of the wall dissipation tensor are then readily obtained,

γwallij (q) = 2πmρ0v̄

∫ zmax

zmin

(ρ
∂ρ

∂qi
)(ρ

∂ρ

∂qj
)

[

ρ2 + (ρ
∂ρ

∂z
)2
]− 1

2

dz . (6-3)

Sometimes the strength is considered to be adjustable, leading to a somewhat smaller value.

6.2 One-body dissipation in a dinucleus

As the fissioning nucleus approaches scission, its shape acquires a binary appearance and the
system can be considered as a dinucleus joined by a relatively small neck though which individual
nucleons may be exchanged. The associated dissipation rate is given by the window formula [28],

Q̇window = 1
4mρ0v̄ πc

2 (2U2
‖ + U2

⊥) =
∑

ij

q̇iγ
window
ij (q)q̇j , (6-4)

where c is the radius of the neck (which is here assumed to have axial symmetry). Furthermore,
U‖ is the component of the relative dinuclear motion along the normal to the window and U⊥

is the component in the plane of the window. In addition, the shape changes of the two binary
partners (the prefragments) give rise to two wall dissipation terms, each one with ṅ calculated
relative to the respective prefragment motion. The combined wall-plus-window dissipation is
then described by [29],

γw+w
ij (q) ≡ γwallij (q) + γwindow

ij (q) = 1
2mρ0v̄











∂R

∂qi

∂R

∂qj
πc2 (6-5)

+ π

∫ z3

z0
dz

(

∂ρ2

∂qi
− 1

2

∂ρ2

∂z

∂R

∂qi

)(

∂ρ2

∂qj
− 1

2

∂ρ2

∂z

∂R

∂qj

)



ρ2 + 1
4

(

∂ρ2

∂z

)2




− 1

2











.
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6.3 Average macroscopic fission dynamics

The role played by the character of the dissipation can be illustrated by the most probable
dynamical fission trajectories calculated macroscopically, i.e. wihout any microscopic corrections.
Relative to non-dissipative dynamics (γ(q) = 0), the use of standard two-body viscosity of
increasing strength causes the scission shapes to grow ever more elongated. The use of one-body
dissipation has the opposite effect, leading to very compact (and slowly evolving) scission shapes.

Figure 6-2: Effect of dissipation on the most probable macroscopic fission dynamics for 236U (from Ref.

[28]). Left: The average dynamical shape paths in the r − σ plane (where r is the distance between the

mass centers of the two halves and σ is the elongation of the (equal) fragments) from the macroscopic

saddle point to scission, as calculated with either the standard one-body wall dissipation (solid curve)

or two-body dissipation of various strengths ranging from 0 to ∞ (dashed curves). Right: The scission

shapes for four nuclei with a range of fissilities Z2/A as calculated for non-dissipative dynamics (left),

infinite two-body viscosity (center), and the one-body wall dissipation given in Eq. 6-3 (right).

Figure 6-3: Comparison of calculated and

measured (most probable) fission-fragment ki-

netic energies as functions of Z2/A1/3, calcu-

lated with either one-body dissipation (solid

curve) or two-body viscosity with vanishing or

infinite strength (dashed curves). The data are

for cases in which the most probable division

is symmetric (see Ref. [27]). The experimen-

tal kinetic energies can be reproduced by ei-

ther adjusting the two-body viscosity, in which

case the scission configurations are elongated

but stretching relatively quickly, or by the one-

body wall dissipation (6-3), in which case the

scission configurations are compact but only

slowly evolving. (From Ref. [28].)



Jørgen Randrup: FIESTA 2014 23

7 Fission dynamics

In the preceding, we have described the various physical ingredients required for the calculation
of the dynamical evolution of the nuclear shape. We discuss here a variety of aspects regarding
the computational solution of the Langevin equation (2-9) for fission studies.

To study fission at thermal neutron energies, one would ideally sample the initial shape, q0,
together with the corresponding momenta, p0, from the quasi-equilibrium distribution around
the ground-state minimum and then calculate the time evolution, q(t), by propagating the shape
with the Langevin equation until scission has occurred and the two fragments are well separated.
This procedure would yield one fission event and it would need to be repeated until the sample
of events obtained is sufficiently large to allow the extraction of the quantities of interest.

However, this naive procedure would not be computationally efficient because the system
is likely to spend a long time roaming around the neighborhood of the ground-state minimum
before accidentally stumbling across the first barrier and into the region of the second minimum,
where again it is likely to spend a long time before either returning to the region around the
first minimum og traversing the outer barrier and proceeding towards scission.

One may thus speed up the occurrence of fission, without affecting the extracted results,
by starting the calculation at or near the second minimum and, furthermore, introducing some
artificial way of discouraging the shape from “going backwards”, i.e. from becoming more com-
pact. Such a bias can be employed in a variety of ways. A more radical way of reducing the
computational effort is to start the system near or slightly beyond the last barrier, but this has
to be done with particular care to ensure that the results are reliable. While these issues are
purely technical, it is practically essential to consider them.

Particularly important observables are the fission fragment mass Af and the total kinetic
energy K of the emerging fragments. The mass partition is essentially frozen in already before
scission occurs, because further changes in the mass asymmetry are strongly hindered when the
neck has become small. By contrast, the kinetic energy does not reach its final value until the
fragments have separated beyond the reach of their mutual Coulomb repulsion (see Fig. 7-1).
However, once the fragments have separated beyond the reach of the nuclear attraction, their
asymptotic kinetic energy can be obtained by augmenting their current kinetic energy by their
current mutual Coulomb potential energy (which is much larger).

Figure 7-1: For the most probable divi-

sion of 240Pu is plotted the dependence of

the potential energy of deformation on dis-

tance between the centers of the two parts

of the system (divided according to the

mass asymmetry degree of freedom). It

should be noted that the energy changes

prior to scission (≈6MeV) are rather small

compared to the energy associated with the

mutual Coulomb repulsion (≈200MeV).

(From Ref. [17].)
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7.1 Smoluchowski limit

As mentioned earlier (Sect. 6), the dissipation associated with the shape dynamics during fission
is rather strong. If that is indeed the case then the inertial mass plays a less crucial role in the
shape evolution and it may be possible to simplify the treatment, as explained below.

When the dissipation is very strong, then the velocities are small. One may then ignore all
accelerations, q̈i ≈ 0, as well as terms of second order in the velocities, q̇iq̇j ≈ 0. Therefore
ṗi =

∑

jk(∂Bij/∂qj)q̇k q̇j +
∑

j Bij q̈j ≈ 0 and the Langevin equation of motion (2-9) reduces to
the Smoluchowski equation,

0 = F pot(q) + F fric(q, q̇) + F ran(q, t) . (7-1)

Recalling that F fric = −γ · q̇, we see that this equation is only of first order in time. We can
therefore readily express the instantaneous velocity,

q̇(t) = µ(q) ·
[

F pot(q) + F ran(q, t)
]

, (7-2)

where the mobility tensor µ(q) is the inverse of the dissipation tensor γ(q). This equation is
recognized as that governing Brownian motion, albeit in a scenario more complicated than the
standard one. Whereas the standard Brownian motion concerns a heavy particle immersed in
an isotropic fluid without any external forces acting, the above equation includes the force from
the potential U(q) and also allows the mobility tensor µ(q) to be anisotropic; both depend
on the “position” q. Moreover, the dimensionality of the space may differ from three (for the
three-quadratic-surface shape family, which contains five shape parameters, the motion takes
place in five dimensions).

The Smoluchowski equation in the form (7-2) may be used to propagate the shape for a brief
time interval ∆t. The accumulated shape change then amounts to

∆q ≡
∫ t+∆t

t
q̇(t′) dt′ ≈ µ(q) ·

[

F pot(q)∆t+

∫ t+∆t

t
F ran(q, t′) dt′

]

. (7-3)

Because of the force F ran is random, the accumulated shape change ∆q is a stochastic quantity
characterized by a distribution function P (∆q). The average shape change is due solely to the
the potential (because the average of the random force is zero),

≺ ∆q ≻ ≡
∫

∆q P (∆q) dq ≈ µ(q) · F pot(q)∆t . (7-4)

The mean “displacement” (i.e. the mean shape change), ∆q, is thus generally not in the di-
rection of the driving force from the potential, F pot, but is modified due to the fact that the
friction affects the different shape parameters differently. Furthermore, the diffusion of the shape
trajectory, q(t), is due entirely to the random force,

≺ ∆qi∆qj ≻ ≡
∫

∆qi∆qj P (∆q) dq (7-5)

= µ(q) ·
∫ t+∆t

t

∫ t+∆t

t
〈F ran(q, t′)F ran(q, t′′)〉 dt′dt′′ · µ(q) ≈ 2Tµ(q)∆t ,

where we have used Eq. (2-8) for the correlation function of the random force. Thus the accu-
mulated covariance between the changes in two shape parameters is proportional to the corre-
sponding element of the mobility tensor, µij, as well as to the prevailing nuclear temperature.
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To simulate the Smoluchowski equation (7-2), it is convenient to diagonalize the mobility
tensor. Let {χ(n)} be its eigenvectors normalized such that χ(n) ·χ(n) is the eigenvalue µn,

µ(q) =
N
∑

n=1

χ(n)(q)χ(n)(q)† : µij(q) =
N
∑

n=1

χ
(n)
i (q)χ

(n)
j (q) . (7-6)

The change in the shape parameter q accumulated during a brief time ∆t is then given by

∆q =
N
∑

m=1

∆q(m) , ∆q(m) =
N
∑

n=1

χ(n)
[

∆tχ(n) · F pot +
√
2T∆t ξ(m)

n

]

, (7-7)

where {ξ(m)
n } are random numbers drawn from a distribution with zero mean and unit variance.

It is instructive to investigate how sensitive the extracted fragment mass distribution is to
the detailed structure of the dissipation tensor. For example, if γ(q) is the dissipation tensor
obtained with the one-body wall formula (6-3), but renormalized such that its N eigenvalues
{γn(q)} are unity on average,

∑

n γn = N (N is five for the 3QS shape family), then a more
isotropic dissipation tensor γ̃(q) is defined by modifying the eigenvalues as follows,

γ̃(f)n (q) ≡ [γn(q) + f ]/[1 + f ] , 0 ≤ f ≤ ∞ . (7-8)

Figure 7-2 illustrates the dependence of the mass distribution on the anisotropy of γ:
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Figure 7-2: Fragment charge distributions obtained by simulating the Smoluchowski equation with (7-7)

using dissipation tensors γ(q) that have different degrees of structure, as governed by the parameter f

(see Eq. (7-8)), as well as the corresponding experimental data (solid dots). The value f = ∞ yields

a totally isotropic dissipation tensor, γij ∼ δij , and the corresponding results agree closely with those

obtained by means of the Metropolis lattice walk (see Sect. 7.2). (From Ref. [30].)



Jørgen Randrup: FIESTA 2014 26

7.2 Metropolis lattice walk

Although the Smoluchowski evolution is easy to simulate numerically using Eq. (7-7) [30], it
does require that both the potential U(q) and the dissipation tensor γ(q) are known. While
U(q) appears to be quantitatively quite well understood nowadays, our knowledge of γ(q) is
still only fairly rudimentary. But some observables are not so sensitive to the details of γ(q)
(see Fig. 7-2) so, for explorative purposes, one may make simplifying assumptions about it.

In particular, if γ(q) is isotropic, γij(q) = γ(q) δij , then the transport process reduces to a
standard random walk [30, 31] and the increments of the shape parameters are readily obtained,

∆qi = µ(q)Fi(q)∆t+
√

2Tµ(q)∆t ξi , µ(q) ≡ 1/γ(q) , (7-9)

where {ξi} are random numbers drawn from a distribution with zero mean and unit variance.
If the potential energy U is known for any value of the shape parameter q, then the local force
F can be obtained as the corresponding gradient, Fi(q) = −∂U(q)/∂qi.

However, if the potential energy is available only on a discrete lattice, as that employed for
the 5D tabulation [12] (see Fig. 4-12), then one must resort to a suitable interpolation scheme,
such as the pentalinear method [30]. Alternatively, one may restrict the possible values of q
to those appearing in the lattice. As it turns out [30, 31], such a discrete transport process
is equivalent to performing a Metropolis walk on the potential-energy lattice. Introduced for 7-a
the purpose of exploring a complicated parameter space according to the appropriate statistical
weight [32], W (q) ∼ exp(−U(q)/T ) for a thermal distribution, the Metropolis walk simulates a
simple diffusion process through the lattice. When the system has arrived at a certain lattice
site, it selects one of the neighboring sites at random and decides whether to move there next
(or stay at the current site) based on the associated change in potential energy: If the potential
step is ”downhill”, i.e. ∆U < 0, then the step is taken; but if ∆U is positive then the step is
taken only with the corresponding thermal probability, exp(−∆U/T ).

The Metropolis lattice walk, combined with a bias potential of the form Ubias(q) = Q2
0/Q

2,
provies a simple and powerful means for obtaining approximate fission-fragment mass distri-
butions in an essentially parameter-free manner. Figure 7-3 shows the very first results [31]
obtained by this method which has since then been extensively benchmarked [33].
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Figure 7-3: The first fission-fragment charge distributions obtained by means of the Metropolis lattice

walk [31] (solid), together with the corresponding experimental data (dashed). [From Ref. [31].]
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7.3 Langevin simulations

Nuclear fission dynamics is sensitive to a variety of physical quantities, particularly the potential
energy of deformation, the associated inertial mass, and the dissipation mechanism. Valuable
insight into these important aspects of the nuclear many-body system may therefore be obtained
once a reliable dynamical treatment has been developed. Offering a physically well-based formal
framework for such studies, Langevin simulations of nuclear shape dynamics have been employed
extensively and have generally speaking met with a large degree of success (for a few examples,
see Refs. [34, 35, 36, 37]).

However, those studies have largely been restricted to higher energies where microscopic
effects are unimportant. The macroscopic limit has the dual advantage of the relative ease with
which the potential can be calculated and the fact that fewer shape degrees of freedom are
needed, thus reducing the dimensionality of the parameter space.

Low-energy nuclear shape dynamics poses a significantly larger challenge, because it is es-
sential to include the microscopic corrections, at least for the potential energy, and a minimum
of five different types of deformation must be considered for fission. But significant progress has
been made recently and it is now possible to simulate the Langevin equation (Sect. 2) within
the three-quadratic-surface shape family (Sect. 3) using the macroscopic-microscopic potentials
(Sect. 4), the incompressible irrotational inertial masses obtained in the Werner-Wheeler ap-
proximation (Sect. 5), and a scaled one-body wall-plus-window dissipation (Sect. 6).
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Figure 7-4: The fragment mass distribu-

tion for 235U(nth,f) as resulting from prelim-

inary Langevin calculations (open circles)

together with the experimentally deduced

distribution (solid dots). The initial nu-

clear shape parameters and the associated

(outwards directed) momenta were sampled

from a distribution located just beyond the

third saddle and they were then propagated

until shortly before scission. (This figure

was kindly provided by Arnie Sierk [38].)

The computational effort required for a full Langevin simulation of fission is about two orders
of magnitude larger than that needed for solving the Smoluchowski equation. But it should be
recognized that whereas the Smoluchowski treatment yields only the shape evolution (i.e. the
path through the shape space, without a clock and hence no velocities), the Langevin treatment
provides the full dynamical information (q(t), q̇(t)) and thus makes it possible to also extract
fragment kinetic energies, in addition to fragment masses - a very important capability. Thus is
has now become possible to carry out numerical simulations of low-energy fission dynamics and
obtain useful event samples in a reasonable time.

Acknowlegdements: I am grateful to Peter Möller and Arnie Sierk for their careful reading
of these notes and their many helpful comments.
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[9] C.F. von Weizsäcker, Zeit. Phys. 96 (1935) 431.

[10] H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8 (1936) 82.
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[30] J. Randrup, P. Möller, and A.J. Sierk, Phys. Rev. C 84 (2011) 034613.
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[33] J. Randrup and P. Möller, Phys. Rev. C 88 (2011) 034613.

[34] G. Chaudhuri and S. Pal, Phys. Rev. C 63 (2001) 064603.

[35] A.V.Karpov, P.N.Nadtochy, D.V.Vanin, and G.D.Adeev, Phys.Rev. C 63 (2001) 054610.
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Exercises:

2-a: We recall that pi =
∑

j Mij q̇j and first note that
∑

j BijMjk = δik implies that

0 =
∂

∂qℓ

∑

j

BijMjk =
∑

j

∂Bij

∂qℓ
Mjk +

∑

j

Bij
∂Mjk

∂qℓ
.

It then readily follows that

∑

jk

pj
∂Bjk

∂qi
pk =

∑

ℓjkm

q̇ℓMℓj
∂Bjk

∂qi
Mkmq̇m = −

∑

ℓjkm

q̇ℓMℓjBjk
∂Mkm

∂qi
q̇m

= −
∑

ℓkm

q̇ℓ δℓk
∂Mkm

∂qi
q̇m = −

∑

ℓm

q̇ℓ
∂Mℓm

∂qi
q̇m = −

∑

jk

q̇j
∂Mjk

∂qi
q̇k .

2-b: Transport in the harmonic approximation: Verify Eq. (2-15). Insert the gaussian ansatz
P (x, t) ∼ exp(−(x − x̄)2/2σ2)/σ into the Fokker-Planck equation (2-12) and evaluate the left-
hand side minus the right-hand side, using ∂tx̄ = V (x̄) = −x̄/t0 and ∂tσ

2 = 2D − 2σ2/t0,

{

∂tP (x, t) + ∂x[V (x)P (x, t)] − ∂2x[D(x)P (x, t)]
}

/P (x, t)

=

(

x− x̄

σ2
∂tx̄+

(x− x̄)2

2σ4
∂tσ

2 − ∂tσ
2

2σ2

)

+

(

x

t0

x− x̄

σ2
− 1

t0

)

+

(

D

σ2
−D

(x− x̄)2

σ4

)

= −x− x̄

σ2
x̄

t0
+

(x− x̄)2

2σ4
(2D − 2σ2

t0
)− D

σ2
+

1

t0
+
x

t0

x− x̄

σ2
− 1

t0
+
D

σ2
−D

(x− x̄)2

σ4
= 0 .

4-a: Formally, the shell-correction method is based on the so-called Strutinsky energy theorem

which states that the variation of the total many-body energy with respect to the occupation
ni of a given quasi-particle state i is equal to the associated quasi-particle energy, δE/δni = ǫi,
i.e. δE =

∑

i ǫiδni. This feature can be illustrated by a classical gas of particles with pairwise
interactions, each particle having the weight ni,

E =
∑

i

pi
2mi

ni +
1
2

∑

ij

W (rij)ninj ⇒ δE

δni
=

p2i
2mi

+
∑

j

W (rij)nj = ǫi .

The actual (bunched) density of states, g0(ǫ) =
∑

i giδ(ǫ− ǫi) can be thought of as resulting
from a variation of the smooth state density g̃(ǫ), g0(ǫ) = g̃(ǫ) + δg(ǫ). Furthermore, changing
the occupancy of states with energy ǫ is equivalent to changing the density of states at that
energy, so the change in the many-body energy EA is then given by Eq. (4-17),

δEA =

∫ λ

ǫ δg(ǫ) dǫ =

∫ λ

−∞
ǫ [g0(ǫ)− g̃(ǫ)] dǫ =

∑

i

ǫigi −
∫ λ

−∞
ǫg̃(ǫ)dǫ .
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4-b: If two well-separated nuclei, A and B, are in mutual chemical equilibrium, i.e. their Fermi
levels are equal, λ̃A = λ̃B, then the total shell energy for the combined dinuclear system, C, is
the sum of the shell energies for each of the two individual systems.

Note first that the eigenstates {ψν} for the combined potential, VCr) = VA(r) + VB(r),
consist of those for the potential VA(r), {ψi}, together with those for the potential VB(r), {ψj}.
The total density of states is therefore the sum of the two separate state densities,

gC(ǫ) =
∑

ν

gνδ(ǫ− ǫν) =
∑

i

g
A
i δ(ǫ − ǫi) +

∑

j

g
B
j δ(ǫ − ǫj) = gA(ǫ) + gB(ǫ) .

The same is then true for the smooth state density,

g̃C(ǫ) = [ξ ∗ gC ](ǫ) = [ξ ∗ (gA + gB)](ǫ) = [ξ ∗ gA](ǫ) + [ξ ∗ gB ](ǫ) = g̃A(ǫ) + g̃B(ǫ) ,

where ∗ denotes convolution. Consequently the shell energies are additive,

δE
(C)
shell = EC − Ẽ(C) =

∑

ν

gνǫν −
∫ λ̃C

−∞
ǫ g̃C(ǫ) dǫ

=
∑

i

g
A
i ǫi −

∫ λ̃A

−∞
ǫ g̃A(ǫ) dǫ +

∑

j

g
B
j ǫj −

∫ λ̃B

−∞
ǫ g̃B(ǫ) dǫ

=
(

E(A) − Ẽ(A)
)

+
(

E(B) − Ẽ(B)
)

= δE
(A)
shell + δE

(B)
shell .

7-a: The shape evolution generated by the Smoluchowski equation can be simulated exactly
by a Metropolis walk when the dissipation tensor γ is aligned with the lattice, γij(q) = γi(q)δij .
First note that when γ is aligned then each lattice direction may be considered separately.

In the discrete treatment, the step size is fixed by the lattice spacing ∆, and we need to
know the probabilities for taking a forward or backward step during a brief time interval ∆t,
P± = ν±∆t. The associated Fokker-Planck transport coefficients V and D, which express the
rate at which the mean location changes and half the rate at which the variance in the location
grows, in the considered lattice direction, are therefore given by

V = (ν+ − ν−)∆ = µF , D = 1
2(ν+ + ν−)∆

2 = µT .

Here F is the force in the considered direction and µ = 1/γ is the mobility in that direction;
these are both insensitive to ∆. The above relations can readily be solved for the rates,

ν± =
µ

∆2

[

T ± 1
2F∆

]

≈ µ

∆2

[

T ∓ 1
2∆U

]

,

where ∆U ≈ −F∆ is the change in the potential when the position is increased by ∆. So

P+

P−
=

ν+
ν−

=
T − 1

2∆U

T + 1
2∆U

≈ e−∆U/T .

This is precisely what characterizes the Metropolis procedure: If the proposed step lowers the
potential then it is accepted unconditionally and otherwise it is accepted with the probability
exp(−∆U/T ). In either case, the ratio between the forward and backward step probabilities
equals exp(−∆U/T ).
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Corrections, additions, modifications (relative to the version dated September 3, 2014):

1. Eq. (2-1) should be

L(q, q̇) = 1
2 q̇ ·M · q̇ − U(q) = 1

2

N
∑

i,j

q̇iMij(q) q̇j − U(q) .

2. Eq. (2-6) should be

F fric(q, q̇) ≡ 〈F diss(q, q̇)〉 = −γ(q) · q̇ : F fric
i (q, q̇) = 〈F diss

i (q, q̇)〉 = −
∑

j

γij(q) q̇j .


