Gamma-Ray Output Spectra from ²³⁹Pu Fission

J.L. Ullmann (For the DANCE collaboration)

LANSCE-NS Los Alamos National Laboratory Los Alamos, New Mexico USA

Workshop on Fission Experiments and Theoretical Advances (FIESTA)

Sept. 10 - 12, 2014 Santa Fe, New Mexico

LA-UR-14-27044

Collaborators and Acknowledgements

S. Mosby, M. Jandel, T.A. Bredeweg, A. Couture, R.C. Haight, J.M. O'Donnell, D.J. Vieira, J.B. Wilhelmy, A. Hayes-Sterbenz, P. Talou, I. Stetcu, T. Kawano *Los Alamos National Laboratory*

C.-Y. Wu, A. Chyzh, J.A. Becker, J. Gostic, R. Henderson, E. Kwan Lawrence Livermore National Laboratory

> Support provided by US DOE / NNSA Contract DE-AC52-06NA25396 (Los Alamos National Security, LLC) Contract DE-AC52—07-NA27344 (Lawrence Livermore National Security, LLC) American Reinvestment and Recovery Act

Fission Physics

Gamma-ray output from ²³⁹Pu(n,fission)

- Prompt gamma ray emission from fission not well studied
 - Only 1 published spectrum for 239 Pu(n,f) at thermal
 - (V.V. Verbinski, Phys. Rev. C 7, 1173 (1973))
 - Other measurements but do cover wide gamma energy range
- Experiment at LANSCE moderated white neutron source
 - Need fission tagging use LLNL/LANL PPAC
 - Gammas detected using Detector for Advanced Neutron Capture Experiments (DANCE) "4π" detector
 - Gammas ± 20 ns from fission event
 - Direct measurement of multiplicity and total energy distribution

DANCE gamma-ray calorimeter

DANCE and LANSCE

DANCE ball (Open) ⁶LiH sphere in center

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

(Los Alamos Neutron Science Center (LANSCE)

Fission tagging using PPAC

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 6

DANCE response correction crucial

Single gamma efficiency $\varepsilon = 0.85$ 7 gammas => $\varepsilon = (0.85)^7 = 0.40$

Methods of response correction

"Spectrum stripping" - calc response, subtract starting at highest energy (eg. R. Billnert, et al., Phys Rev C 87, 024601 (2013) "Inverse Methods" - solve O = R I for input spectrum I 1-dimensional or 2-dimensional O and I eg. A. Chyzh, et al., Phys. Rev. C 90, 014602 (2014) 1D: Ey, Mult each unfolded 2D: Unfold E_{tot} vs Mult Matrix "Forward Methods" - Assume spectra, simulate response and compare Iterate spectra until fit Ultimate - use a real physics model with parameters Experimental approach - don't depend on physics model Parameterize data analytically NOT (!!) a physics model (but may be motivated by physics)

Detector Response Correction

Etot MultCluster <Min >= 8.70 +/- 0.02 <Ein>= 6.40 +/- 0.01 CompareGamSimENDF.C <Msim>= 5.24 +/- 0.01 <Esim>= 4.55 +/- 0.01 FG75A5.root FS_Feb26_2011_75_5.txt 야님 Energy (MeV) $\varepsilon = 0.85$ (Geometric) $\epsilon = (0.85)^7$ for 7 gamma rays = 0.40

(Preliminary results shown in this figure!)

Parameterized fission spectra

Multiplicity

Sum over two distributions

 $M_{\gamma} = M_1 + M_2$

• Assume Multiplicity ~ Spin distributions $P(J) \sim (2J+1)e^{-J(J+1)/B^2}$ (Wilhelmy, Phys Rev C 5, 2041 (1972))

Gamma energy distribution

- $P(\varepsilon) \sim T(\varepsilon) \rho(\varepsilon)$ $T(\varepsilon) \sim A \varepsilon^3$ (E1), $\rho(\varepsilon) \sim Be^{\alpha(Eo-\varepsilon)}$
- Best fit:

 $\begin{array}{l} \mathsf{P}_{1}(\varepsilon) \sim \varepsilon^{2} e^{-(a^{1}+M\gamma b^{1})\varepsilon} \\ \mathsf{P}_{2}(\varepsilon) \sim \varepsilon^{3} e^{-(a^{2}+M\gamma b^{2})\varepsilon} \end{array} \quad (\text{Fit params: } a_{1}, a_{2}, b_{1}, b_{2}) \end{array}$

- Observed Gamma spectrum is sum over many fission products
 - Different excitation energies, temperatures, multipolarity
- Parameterization not a physics model

Procedure for fitting parameters

- Generate event consisting of $M_{\gamma} = M_1 + M_2$ gamma rays with energy ε_i from $P(M_{1,2})$ and $P_{1,2}(\varepsilon_{\gamma})$
- Transport all gammas from event through GEANT4 model of DANCE to produce "experimental" values
- Compare to measured values calculate $\chi^{\rm 2}$
 - M_{cr} chosen to avoid overlapping clusters
 - M_{cr} easily simulated by GEANT
 - E_{tot} (Tresh = 150 and 400 keV)
 - M_{cr} (150 keV Threshold)
 - E_v (150 keV threshold)
 - More weight to higher threshold
- Vary parameters at random to find minimum χ^2

Iterated "Simulated Annealing" technique Vary parameters over range $1\pm\delta$ $P(\Delta) = e^{-\Delta/T}$

Detour: Fission neutron response

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 11

²³⁹Pu(n,fission) Cross Section

Best-fit parameters

$$P(M_{\gamma}) = P(M_1) + P(M_2)$$

$$P(M_1) = (2M_1 + 1)e^{-M_1(M_1 + 1)/B_1^2}$$
$$P(M_2) = (2M_2 + 1)e^{-M_2(M_2 + 1)/B_2^2}$$

$$P_1(\varepsilon_{\gamma}) = \varepsilon^2 e^{-(a_1 + M_{\gamma}b_1)\varepsilon} \qquad P_2(\varepsilon_{\gamma}) = \varepsilon^3 e^{-(a_2 + M_{\gamma}b_2)\varepsilon}$$

 $B_{1} = 6.66 \pm 0.15$ $B_{2} = 2.54 \pm 0.12$ $a_{1} = 3.80 \pm 0.12$ $a_{2} = 1.53 \pm 0.14$ $b_{1} = 0.0428 \pm 0.0019$ $b_{2} = 0.0522 \pm 0.0034$

Raw Data vs Parametrized fit

Theoretical Calculations

Monte-Carlo Hauser-Feshbach Model

I. Stetcu, P. Talou, T. Kawano, M. Jandel, Phys. Rev. C 90, 024617 (2014)

T. Kawano, P. Talou, M.B. Chadwick, T. Watanabe, J. Nucl. Sci. Tech. 47, 462 (2010)

N. Becker, P. Talou, T. Kawano, Y. Danon, I. Stetcu, Phys. Rev.C 87, 014627 (2013)

- Fragment mass distribution semi-empirical
- Radiative strength functions from RIPL-3
- Level density was Gilbert-Cameron formalism
- Spin Distribution:

$$P(J) = (2J+1)e^{-J(J+1)/2B^2}$$

$$B = \alpha \frac{I_o T}{\hbar^2}$$

- I_o = ground-state moment of inertia
- T = fragment temperature
- A = adjustable parameter

Results – Gamma-ray Multiplicity

Results: ²³⁹Pu(n,f) Gamma Energy

Results: ²³⁹Pu(n,f) Total gamma-ray energy

NATIO

²³⁹Pu(n,f) Average γ Multiplicity and E_{tot,γ}

	<m></m>	<e<sub>tot,γ></e<sub>
This Work (10.93 eV)	7.15 ± 0.09	7.46 ± 0.06
Pleasonton (thermal) (Nucl. Phys. A 213, 413 (1973))	6.88 ± 0.35	6.73 ± 0.35
Verbinski (thermal) (Phys. Rev. C 7, 1173 (1973))	7.23	6.81
MCHF (Stetcu/Talou) (Thermal, 140 keV thresh. α=1.5) LA-UR-14-23128	7.05	6.74
Madland Summary		6.74
Chyzh, "1D" Unfolding (Phys. Rev. C 87, 034620 (2013))	7.50	7.30
Chyzh "2D" Unfolding (Phys. Rev. C 90, 014602 (2014))	7.93	7.94

- Uncertainty in <Etot> ~ Fitting uncertainty, determined as σ of 14 iterations with lowest χ^2
- •<M> very sensitive to detection threshold!

Unexpected detail: (n,γf)?

Resonances we studied looked to be quite similar – but is that universally true? (S. Mosby – $^{239}Pu(n,\gamma)$ analysis)

Resonance properties – Raw data

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Summary and Conclusions

- Measurements of *distribution* of multiplicity, gamma energy, and total gamma energy ("forward modeling" parameterization of data) Needs high-segmentation, 4π capability !!
- Average multiplicity in agreement with previous measurements sensitive to thresholds
- Average Etot ~ 10% higher than previous
- Theoretical modelling reproducing ²³⁹Pu data, but with adjustable parameters
- Still some puzzles; (n,γf)?
- "More work to be done!"

Extra Slides

Why study fission gammas?

- Applications need to know distribution of gamma-ray multiplicity, gamma energy, total gamma energy
 - Reactors: heating, decay heat
 - Non proliferation
 - Illicit nuclear materials (portal monitors)
- Physics of fission
 - Fission products high-spin, neutron-rich
 - Decay properties constrain models

<Ey> Changes with neutron energy

- Fragment mass distribution changes with neutron energy
- Madland formula reflects changing products and J (excitation)
- $E_{tot} = 6.741 + 0.117 T_n (MeV) 0.0002 T_n^2 MeV$
- Low energies resonances no significant change in gamma properties (Thermal and 100 keV should have similar $\langle E_v \rangle$)

Fig. 16. Average total prompt fission gamma-ray energy (E_{ν}^{tot}) for the $n(E_n) + {}^{239}\text{Pu}$ system.

PPAC Performance

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NNS

Measure Mult (v_{γ}), E_{gam} , E_{tot} and Neutron energy

Response Correction / Unfolding

- Philosophy experimenters want to measure something,
- Not just fit parameters to a theory
- Forward method not a physics model
 - Parameters motivated by physics
 - but really only parameters
 - Represent data

Detour: Fission neutron response

 Fission neutrons – Ave energy ~ 2 MeV BUT – High energy tail ! (Maxwellian)
Fission neutron effects – MCNP by TNT
Transport ²⁵²Cf fission neutron spectrum into DANCE

Detector Response Function

Multiplicity

• Sum over two distributions $M_v = M_1 + M_2$

• Spin distributions P(J) ~ (2J+1)e^{-J(J+1)/B²} (Wilhelmy, Phys Rev C 5, 2041 (1972))

• Assume P(M) = P(J) (Number of gammas = spin) (Good for E1, M1 roughly)

• 2 fission products => $P(M_{\gamma}) = P(M_1) + P(M_2)$

B's are fitted - M's (J's) are random variables

Detector Response Function

Gamma energy distribution

• Lemaire calculation:
$$P(\varepsilon) \sim \varepsilon^2 e^{-\beta \varepsilon}$$

(S. Lemaire et al., Phys. Rev. C 73, 014602 (2006))

• Best fit: :

 $\begin{array}{l} \mathsf{P}_{1}(\varepsilon) \sim \varepsilon^{2} e^{-(a1+M_{Y}b1)\varepsilon} \\ \mathsf{P}_{2}(\varepsilon) \sim \varepsilon^{3} e^{-(a2+M_{Y}b2)\varepsilon} \end{array} \quad (\text{Fit params: } a_{1}, a_{2}, b_{1}, b_{2}) \end{array}$

Observed Gamma spectrum is sum over many fission products

• Different excitation energies, temperatures, multipolarity

Details:

J.L. Ullmann, et al., Phys. Rev C **87**, 044607 (2013) M. Jandel et al., Los Alamos Report LA-UR-12-24975

Multiplicity dependence of Etot and Egam

Egam: no strong multiplicity dependence Etot: Etot roughly proportional to multiplicity

Multiplicity sensitive to DANCE threshold

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 33

High-energy gammas

F.S. Dietrich, J.C. Browne, W.J. O' Connell, and M.J. Kay, Phys. Rev. C 10, 795 (1974)

Changes to Analysis 29-Aug-12

Parameterization

•Method fitting: "Metropolis Algorithm" + Simulated Annealing

•Parameters fitted for Chi-square minimization

•7 spectra (P9VA2MD)

•Overestimates high-energy effect

•4 Spectra (P9VA2ME)

•Uncertainties in <E>, <M>

- •New method of minimization implies cannot easily use previous technique for estimating uncertainties
- •Use % Std of 14 best-fit (lowest Chi2) iterations
- •BUT use Value of best-fit iteration!
- •Effect of threshold on measured multiplicity

Previous Measurements

F. Pleasonton, Nucl. Phys. A**213**, 413 (1973) (Thermal)

V.V. Verbinski, H. Weber, and R.E. Sund, Phys. Rev C **7**,1173 (1973) (Thermal)

Other measurements – incomplete Gamma energy range

- "Unfolding" of measured spectrum critical to results
- •Pleasonton also determined fission product ID from Doppler shift.

Fig. 1. Scale drawing of the experimental arrangements. The y-rays were attenuated only by the silicon wafer of detector no. 1, the thin Al window on the vacuum chamber, and the Al cover on the Nal(TI) crystal. Scattering of the y-rays into the crystal was minimized by the interior design of the Pb collimator.

PPAC Assembly

