The ²⁴²Pu(n,f) measurement at the CERN n_TOF facility

<u>A. Tsinganis^{1,2}, E. Berthoumieux^{3,2}, C. Guerrero², N. Colonna⁴, M. Calviani²,</u> R. Vlastou¹, V. Vlachoudis², M. Kokkoris¹, S. Andriamonje^{3,2}, F. Gunsing³, C. Massimi⁵ and the n_TOF Collaboration

National Technical University of Athens (NTUA), Greece
European Organisation for Nuclear Research (CERN), Geneva, Switzerland
Commissariat a l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette, France
Istituto Nazionale di Fisica Nucleare, Bari, Italy
Dipartimento di Fisica, Universita di Bologna, and Sezione INFN di Bologna, Italy

FIESTA Fission School & Workshop Santa Fe, September 8-12, 2014

Outline

- Introduction and motivation
- Experimental
- Monte-Carlo simulations
- Data analysis procedure
- Results
- Theoretical calculations
- Summary

Nuclear fission and nuclear energy applications

- The measurement at n_TOF was planned within the framework of the ANDES project ("Accurate Nuclear Data for Nuclear Energy Sustainability")
 - Measure cross-sections of actinides at different facilities and with different reference reactions
- Advanced nuclear reactor designs
- Waste transmutation
- Design of such systems requires accurate knowledge of many cross-sections
 - Fuel isotopes, structural materials etc.
- Plutonium is important component of nuclear waste and fission cross-sections of Pu isotopes are included in the NEA High-Priority Measurement list (0.2-20MeV for ²⁴²Pu)

Experimental setup

- MICRO-MEsh GAseous Structure ("Microbulk" variant)
 - Low amount of material to minimise neutron interactions
- 4 x ²⁴²Pu samples (3.1mg), 1 reference ²³⁵U sample (3.3mg)
- Signals digitised with 8-bit flash-ADCs
 - > 100 MHz sampling rate (10 ns/sample) , 80 ms acquisition window

Simulations: neutron beam

- Investigation of several aspects of neutron beam essential for analysis of n_TOF experimental data
 - Neutron fluence
 - Spatial profile and beam interception factor
 - Neutron moderation

Time-of-flight to neutron energy

- In-beam photons
- Secondary charged particle production in collimator
- ...

Simulations: detector response

- Simplified geometry created in FLUKA
- Appropriate distributions of α -particles and fission fragments created inside the sample
 - Fission fragment distributions obtained from the GEF (*GEneral Fission*) code using an n_TOF-like neutron spectrum

• Finally, individual signals can be reconstructed accounting for electron drift and signal shaping

 Energy deposition along Y-axis is scored event-by-event

Performance of peak-search routine

- Very useful for testing pulse recognition routine with an artificial signal
 - The performance of the peak-search algorithm can be studied with an artificial signal containing a known number of events

Raw data analysis

- Baseline oscillation
 - Initial γ-flash signal (hundreds of ns)
 - Oscillation after the γ-flash lasts several μs
 - Affects the high-energy data down to 1-2 MeV
- "Compensation method"
 - Oscillations recorded in adjacent detectors for the same proton bunch are almost identical
 - Baseline oscillation can be subtracted from adjacent detector
- Peak-search routine
 - Determines the signal baseline
 - Looks for threshold crossings
 - Then searches for peak or multiple peaks looking at first and second derivative of the data
 - Determines peak position, amplitude
 - ▶ Builds pulse-height spectra →

Fission counts

Sample impurities

The contribution from contaminants is well below the spontaneous fission background or ²⁴²Pu counts, depending on the energy region

Cross-section calculation

• The cross-section is calculated relative to the ²³⁵U(n,f) cross-section:

$$\sigma(E_n) = \frac{N(E_n) - N_{sf}(E_n)}{N_{ref}(E_n)} \cdot \underbrace{\frac{\varepsilon_{ref}}{\varepsilon} \cdot \frac{f_{c,ref}}{f_c}}_{\varepsilon} \cdot \underbrace{\frac{n_{ref}}{n}}_{l} \cdot \sigma_{ref}(E_n) - \underbrace{\sum_{i} a_i \cdot \sigma_i(E_n)}_{i}$$

- We need to calculate the detector efficiency and the amplitude cut correction
- Detector efficiency ε
 - Fraction of fission fragments that deposit energy in the gas 140
 - Estimated from simulations
 - $235 U \rightarrow \varepsilon = 0.95$
 - ▶ 242 Pu → ε = 0.99
- Amplitude threshold correction
 - Depending on detector and selected threshold, varies between 0.85-9.95
 - An important scaling factor, difficult to estimate more accurately than a few percent

Fission threshold and above

Theoretical cross-section calculations

- Using the EMPIRE code
 - A modular nuclear reaction code, implements variety of reaction mechanisms and nuclear models
- Retrieval of nuclear masses, ground state deformations, level schemes, decay schemes, optical model parameters, fission barrier height/width from RIPL-3 library
- Up to 3 emitted neutrons followed, <u>competitive channels taken into account</u>
- Level densities treated within Enhanced Generalised Superfluid Model (EGSM)
- Fission barrier parameters can be adjusted
 - Changes of 5-10% can improve the reproduction of the cross-section, particularly as they affect the thresholds for first, second, ..., n-chance fission

Results

- Overall reproduction of experimental data is satisfactory
- (n,tot), (n,el) and (n,γ) channels also well reproduced
- Unfortunately... No data on (n,xn) reactions is present in EXFOR
- It is possible the (n,2n) channel is overestimated

 Despite the satisfactory performance in the case of ²⁴²Pu (even-even nucleus), the code has been found to be much less effective in reproducing cross-sections of other actinides, such as ²³⁷Np (even-odd)

Summary

- The high-priority measurement of the ²⁴²Pu(n,f) cross-section has been performed at n_TOF
- Detailed Monte-Carlo simulations of the neutron beam were performed and validated with experimental data, then used to characterise the contribution of the neutron moderation process
- Analysis software and simulation tools have been developed for future fission measurements
- A new proposal: measurement of ²⁴⁰Pu(n,f) at n_TOF's Experimental Area II (18 m flight-path, commissioning underway)
 - Shorter experiment (3-5 weeks) due to higher flux
 - Shorter acquisition window (stronger background suppression)
 - Approved by INTC (ISOLDE Time-of-flight Committee) on 26/6/2014
- Thank you for your attention...

Extra slides

Neutron production and moderation

- Water-cooled lead target (40 cm length, 60 cm diameter)
- Cooling layer: 1 cm water all around the target (also a moderator)
- Moderator layer: (in the beam direction)
 - Two moderator configurations
 - H₂O (demineralised water)
 - $H_2O + H_3BO_3$ (boric acid, enriched in ¹⁰B)

Neutron beam-line and Experimental Area I

- Positions of beam-line elements in meters from the spallation target
- Consecutive tube diameter reductions from 80 to 20 cm
- Sweeping magnet
- Shielding
- Two collimators
 - First collimator @ 137 m \rightarrow fixed 10 cm diameter (iron and borated PE)
 - Second collimator @ 178 m (immediately before EAR-1) (iron and borated PE)
- Two configurations for second collimator
 - "Capture" \rightarrow 1.9 cm diameter (4 cm beam at detector position)
 - "Fission" \rightarrow 8 cm diameter

The micromesh

Courtesy A. Teixeira (CERN)

- The micromesh is practically transparent to electrons due to the electrical field configuration
- Positive ions created in the amplification region are captured in the micromesh and do not enter the drift region

Mounting samples and detectors

Data acquisition

Analogue signals sent to n_TOF DAQ

- Signals are digitised with 8-bit flash-ADCs
- 100 MHz sampling rate (10 ns/sample) selected
- Proton beam triggers an 80 ms acquisition window (equivalent E_n around 30 meV)
- Beam-off data are recorded in identical windows triggered by a pulser (1 Hz)
 - An equivalent time-of-flight can be assigned to background events for direct comparison with beam-on data
- A zero-suppression algorithm reduces the size of data to be transferred and stored
- A fixed number of pre- and post-samples are recorded before and after each detected signal
 - Later used for the baseline calculation
- Data are temporarily saved to disk before transfer to tape for long term storage

Simulations: comparison with evaluated fluence

Neutron energy (eV)

Spatial profile

- The position and energy of the neutrons that reach the EAR are used to determine the spatial profile and its energy dependence
- Asymmetries are due to collimator misalignment

 Comparison with experimental data obtained with XY Micromegas

 Tails not reproduced due to "ideal" collimation assumption

Beam interception factor

- The fraction of the neutron beam intercepted by the sample
- Depends on the size and position on the sample, but is also a function of the neutron energy
- BIF was calculated for different sample diameters
- Effects of small sample misalignments were also studied

Simulations: neutron moderation

ر (cm)

How is the neutron energy reconstructed from the measured time-of-flight?

- Neutrons enter the tube after following an unknown path inside the target and other materials during an unknown time interval
 - ➤ using the measured TOF will lead to an incorrect estimate of the neutron energy
- Effective moderation length calculated as:

$$\lambda(E_n) = v \cdot t_{mod}$$

v: velocity, *t_{mod}*: effective moderation time

- Experimental unknown
- Mean λ vs. neutron energy (also accounting for proton pulse width) →
- Used to iteratively correct energy estimate

$$E_k = \frac{1}{2}m\left(\frac{L_{geom} + \lambda(E_{k-1})}{t}\right)^2$$

In-beam photons

- > Photon fluence in EAR-1 estimated with same methodology as the neutrons
- \blacktriangleright A prompt (t < 1 μs) and delayed (t > 1 μs) component can be observed studying the time of arrival

In-beam photons

- The energy distribution of the two components reveals the different origins
- Prompt component
 - Energies up to several GeV
 - Unchanged with addition of ¹⁰B

Delayed component

- 478 keV from 10B(n,α)
- ▶ 511 keV e-e+
- 2.2 MeV from 1H(n,γ) strongly suppressed
- 7-7.5 MeV from capture in Pb, Fe, Al etc.

Baseline calculation

- Pre-trigger and post-acquisition window data (512 pre-samples and 2048 postsamples) used for baseline determination
- Usually calculated as the average of the data
- **BUT...** signals may be present due to the high activity of the samples
- Iteration: calculate average, then repeat, excluding data outside a given range from the first estimate. Repeat with restricted range until convergence.

Amplitude vs. $E_n - {}^{235}U$

Amplitude vs. $E_n - {}^{242}Pu$

Amplitude spectra

