DE LA RECHERCHE À L'INDUSTRIE

Theoritician dreams /nightmares come true

Julien TAIEB For the SOFIA Collaboration

Fiesta workshop, Sept. 13th, 2014

www.cea.fr

THE EXPERIMENTAL TECHNIQUES

- (Thin))Target usually radioactive
- Low detection efficiency
- Mass number only measured in most experiments
- Atomic number very hard to get

Despite 75 years of effort, there is no way to identify all FF

DE LA RECHERCHE À L'INDUSTRI

Cea

THE FF MASS YIELDS MAJOR ACTINIDES

| PAGE 3

THE NUCLEAR CHARGE MEASUREMENT ISSUE

Measurement of the nuclear charge of FF

- Full ID needed for applications and for underatanding of the process
 - Mass number doesn't mean much
- How to measure the Z?
 - Specific methods
 - Chemical separation + Gamma spectroscopy
 - X-ray identification
 - General method : energy loss (ΔE)
 - $\Delta E \propto Z^2$
 - Does work for the light FF
 - No separation for the heavy FF
 - Very low recoil velocity
 - Strong fluctuation in mean charge state
- Only light fission fragments can be identified in Z and A

DE LA RECHERCHE À L'INDUSTRIE

THE FF MASS YIELDS MAJOR ACTINIDES

DE LA RECHERCHE À L'INDUSTRIE

NEW EXPERIMENTAL APPROACH (K.H. SCHMIDT 96)

- Study the fission of radioactive nuclides
- Two FF emitted in forward direction : ∈_{geom}
- Centre of mass boost:
 easier identification of FF
- Nuclear charge measured

DE LA RECHERCHE À L'INDUSTR

FISSION IN REVERSE KINEMATICS AT GSI

THE SOFIA EFFORT

- Follow K.-H. Schmidt pioneering idea
 - Improve precision
 - Measure the mass number
 - Get the number of emitted neutrons
- Get unprecedented mass and charge resolutions
- Study the fission of many actinides and preactinides
- 8 european labs involved
- 5 years of technical developments
- 5 million euros invested
- 1st experiment in august 2012
- Provide new data usable for :
 - Current nuclear reactors operation
 - Next generation nuclear reactor design
 - simulation of accidental configurations
- Improve the understanding of the process
- Contribute to the qualification of theoretical codes
- Improve the r-process modelling

DE LA RECHERCHE À L'INDUSTR

1ST SOFIA EXPERIMENT, 08/2012

The SOFIA set up

all detectors developed for that experiment Challenge : mass identification in the FF region

DE LA RECHERCHE À L'INDUSTRI

<u>Spectra</u>

Chart of nuclide Nuclear Charges Masses

DE LA RECHERCHE À L'INDUSTRI

CHART OF MEASURED FF

PhD thesis : Julie Martin

DE LA RECHERCHE À L'INDUSTRIE

NUCLEAR CHARGE SPECTRUM.

PhD thesis : Julie Martin

MASS NUMBER SPECTRUM

Fission yields

1) Element 2) Isotonic 3) Isotopic 4) Mass 5) Prompt Neutrons $\overline{\nu}$ DE LA RECHERCHE À L'INDUSTRI

Cea

²³⁸U, CHARGE YIELDS

PhD thesis : Eric Pellereau

DE LA RECHERCHE À L'INDUSTR

Cea

²³⁵U, CHARGE YIELDS

2 THE THORIUM CHAIN, K.-H. SCHMIDT ET AL VS SOFIA

Courtesy : Audrey Chatillon

Fission yields

1) Element 2) Isotonic 3) Isotopic 4) Mass 5) Prompt Neutrons $\overline{\nu}$

ISOTONIC YIELDS: N = A - Z, FISSION OF ²³⁸U

DE LA RECHERCHE À L'INDUSTRIE

ISOTONIC YIELDS: N = A - Z, FISSION OF ²³⁵U

| PAGE 25

Fission yields

1) Element 2) Isotonic 3) Isotopic 4) Mass 5) Prompt Neutrons $\overline{\nu}$

DE LA RECHERCHE À L'INDUSTRI

ISOTOPIC YIELDS (HEAVY FF)


```
ISOTOPIC YIELDS ; ZOOM Z = 49-50
```


DE LA RECHERCHE À L'INDUSTR

FISSION MODES

DE LA RECHERCHE À L'INDUSTRIE

ISOTOPIC YIELDS; Z = 49-50

Cea ISOTOPIC YIELDS; Z = 49-50

Fission yields

- Element
 Isotonic
 Isotopic
 Mass
- 5) Prompt Neutrons $\overline{\nu}$

```
DE LA RECHERCHE À L'INDUSTRIE
```


MASS YIELDS, COMPARISON TO THE EVALUATION

Fission yields

Element
 Isotonic
 Isotopic
 Mass
 Prompt Neutrons ν

DE LA RECHERCHE À L'INDUSTRIE

$\overline{oldsymbol{artheta}}$ VS Z , FISSION OF 235 U

| PAGE 35

$\overline{\boldsymbol{\upsilon}}$ VS A FOR Z = 49, , FISSION OF ²³⁵U

\overline{v} vs a for Z = 50, , FISSION OF ²³⁵U

| PAGE 37

Fission yields

1) Element 2) Isotonic 3) Isotopic 4) Mass 5) Prompt Neutrons $\overline{\nu}$ 6) TKE

TKE VS Z, FISSION OF ²³⁵U


```
DE LA RECHERCHE À L'INDUSTRIE
```


TKE VS A FOR Z = 49, FISSION OF ²³⁵U

Cea

TKE VS A FOR Z = 50, FISSION OF ²³⁵U

CONCLUSIONS

SOFIA1 provides new results :

- Fission of tens of nuclide studied in one experiment
- All fission fragments identified unambiguously for the 1st time in low energy fission
- Nuclear charge resolution = 0,4 u FWHM
- Mass resolution = 0,8 u FWHM for A = 140
- Typical uncertainty on isotopic yields < 5 %
- Big step forward w/ respect to previous knowledge
- Detailed information on fission modes
- New data on the scission configurations
 - Total kinetic energy
 - Number of emitted neutrons

DE LA RECHERCHE À L'INDUSTR

The SOFIA collaboration

CHALMERS UNIVERSITY OF TECHNOLOGY

 L'²³⁸U : 1 noyau sur les 80 mesurés → Intérêt aussi dans les systématiques
 SOFIA 2 en 2014

<u>Futur 1 : R3B</u>

- Aimant GLAD : 4,8 T.m. (ALADIN 2,2 T.m.)
- CALIFA : Mesure des gammas
- NEULAND : Mesure des neutrons (par fragment ?)
- Répartition de l'énergie dans la fission

Futur 2 : FELISE @ FAIR

 Fission at ELISE : excitation électromagnétique par des e- : E* mesurée

SOUSTRACTION DE LA COMPOSANTE RÉSIDUELLE

La Sélection Z1+Z2 = 92 : n'élimine que les fissions de haute énergie ou des **PROTONS** sont enlevés

Suppression de la composante ou seuls des **NEUTRONS** sont enlevés ? → Utilisation des fissions dans les <u>matériaux légers</u> (pas de fission e.m.)

SOUSTRACTION DE LA COMPOSANTE RÉSIDUELLE

La Sélection Z1+Z2 = 92 : n'élimine que les fissions de haute énergie où des **PROTONS** sont enlevés

Suppression de la composante où seuls des **NEUTRONS** sont enlevés ? \rightarrow Utilisation des fissions dans les <u>matériaux légers</u> (fissions nucléaires uniquement)


```
DE LA RECHERCHE À L'INDUSTRIE
```

MASSES - PIC/VALLÉE VS E*

FISSION E.M ET GDR

Exemple : fission de l'U8 sur SOFIA : U8 : GS = 0+ ; apres e.m. GDR : U8 : 1-U7 : GS = 1/2+

DE LA RECHERCHE À L'INDUSTRIE

POLARISATION EN CHARGE

DE LA RECHERCHE À L'INDUSTRIE

SPECTRE D'EXCITATION À LA FISSION

DE LA RECHERCHE À L'INDUSTRI

Cea

12-Sep-14

DE LA RECHERCHE À L'INDUSTRIE

CHARGE POLARIZATION

DE LA RECHERCHE À L'INDUSTRIE

ACTIVE TARGET

DE LA RECHERCHE À L'INDUSTRI

Cea

MWPC : RÉSOLUTION EN POSITION


```
Cea
```

RENDEMENTS ISOTOPIQUES ; ÉVOLUTION

MUSIC : ANGLE RESOLUTION

FISSION EN CINÉMATIQUE INVERSE RELATIVISTE

Fission de l'²³⁸U en cinématique inverse ⇔ n (≈6 MeV) + ²³⁷U

The detectors

CIBLE ACTIVE : FISSION DANS LES MATÉRIAUX LOURDS

Stack of ionisation chambers

 ΔE anode 2

Anodes +1200V

- 1) Création d'ed'ionisation
- 2) Avalanche d'e- autour des fils d'anodes
- 3) Influence sur les pistes de cathode

200 μm requis en X 135 μm mesures FWHM

DE LA RECHERCHE À L'INDUSTRI

DISPOSITIF TEMPS DE VOL

Haute énergie et base de vol courte (7.5 m) : Nécessaire pour séparer A lourds : **40 ps FWHM** Au GSI : 100 ps **FWHM au mieux**

de la recherche à l'industrie

Stop : contrainte de taille :
 Dimensions : 90 * 60 cm² (dispersion du dipôle)

Bruyères-Le-Châtel

A. Ebran *et al.*, NIM A 728 (2013) 40-46 DE LA RECHERCHE À L'INDUSTRI

Z2 VS Z1

DE LA RECHERCHE À L'INDUSTR

TWIN MUSIC : MULTI-SAMPLE IONISATION CHAMBER

DE LA RECHERCHE À L'INDUSTRIE

MUSIC : ANGLE RESOLUTION

TOF RESOLUTION

