LA-UR-14-26942

Prompt fission neutron and gamma-ray properties in a Monte-Carlo Hauser-Feshbach framework

Ionel Stetcu

Theoretical Division

PRC 87 (2013) 014617

PRC **88** (2013) 044603 PRC **90** (2014) 024617 Los Alamos National Laboratory

Main collaborators: T. Kawano, P. Talou, M. Jandel

UNCLASSIFIED

Outline

- Motivation
- > The Monte-Carlo Hauser-Feshbach method
- > Results for prompt particles, discussion select parameters:
 - Initial spin distribution
 - Excitation energy sharing between fragments
 - Sensitivities to other parameters
- Summary and outlook

UNCLASSIFIED

Motivation

- Basic science:
 - Understand the pre- and post-scission physics
 - Interpret experimental data
 - Provide guidance on detector design

- Applications:
 - Nuclear energy: future reactors (new fuel compositions, new geometries, etc.)
 - Existing fuel cycle (safety, waste management, etc.)
 - Nuclear forensics

Astrophysics (reaction networks)

UNCLASSIFIED

Experiment

- Specroscopy: GAMMASPHERE (binary/ternary fission) ANL, BNL
- Calorimetry:
 - DANCE n-induced fission ٠
 - fusion-fission reactions (Dubna) ۰.
 - Crystal ball 162xNal(TI) 4π array (Darmstadt) ۰.
- See talks in FIESTA2014: R.C.Haight, N.Colonna, A.Tsinganis, F.Tovesson, M.Jandel, A.Oberstedt, J. Ullmann etc.

Fission simulation

- Assumptions:
 - Prompt fission products emitted from the fully accelerated fragments
 - No emission occurs during the evolution from saddle to scission
 - No emission at the neck rupture
 - No time information (stop at the ground/isomeric state)
 - Fission fragments are compound nuclei
- C++ code (MPI implementation) CGMF=CGM+FFD
 - deterministic and Monte-Carlo modes
 - similar to DICEBOX at low energies

other similar implementations: FREYA (LLNL), FIFRELIN (CEA), GEF (Schmidt)

UNCLASSIFIED

Hauser-Feshbach for fission fragments

Treat fission fragments as compound nuclei

Description of:

- average prompt fission neutron spectrum
- average prompt fission neutron multiplicity
- ▷ P(v), v(A)
- prompt gamma observables
- > correlations between particles
- > Same approach applicable to describe beta-delayed neutrons/gammas

Complication: more parameters, some not well known

Madland-Nix / Los Alamos model

Hauser-Feshbach formalism for n-induced reactions

J=1 J=8 J=12 J=15

¹⁴⁶Ba

9

10

8

Excitation Energy (MeV)

5 6

4

Input into the fission simulations

- Experimental Information:
 - Primary fission fragment yields
 - Internal excitation energy

 $TXE = Q_f(A_l, Z_l; A_h, Z_h; A_c, Z_c) - TKE$ $= M_l + M_h - M_a + E_{ing} + B_n(A_a, Z_a) - TKE$

- Ingredients used in HF calculations (gamma strength functions, discrete levels)
- Theory/Model:
 - Charge distribution: from Wahl systematics $Z_p = A_h \frac{Z_c}{A} + \Delta Z$
 - Parity distribution: assumed equiprobable
 - Excitation energy sharing: $R_T = \frac{T_l}{T_h}$
 - Initial spin distribution: $P(J) \propto (2J+1) \exp\left(-J(J+1)/(2B^2)\right)$
 - Ingredients used in HF calculations (optical model parameters)

UNCLASSIFIED

NO DIRECT MEASUREMENTS

0.02 0.03 0.04 0.05

Total Kinetic

Energy (MeV

240

220 200 180

160

140

120

 de-excitation feeding patterns of the ground-state bands

- angular anisotropy of prompt fission gamma rays
- isomeric ratios

Energy sharing

Sensitivity to the initial angular momentum

$$P(J) \propto (2J+1) \exp\left(-J(J+1)/(2B^2)\right)$$
$$B^2 = \frac{\mathcal{I}T}{\hbar^2} \qquad \qquad \mathcal{I} = \alpha \,\mathcal{I}^0_{rig}(Z, A, \beta)$$

Experimental evidence*: J_{rms}=5-8 for LF and 7-10 for HF

Slide 10

Sensitivity to the initial angular momentum (cont)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Isomeric ratios and the angular momentum

thermal neutron capture on stable nuclei: better handle on initial spin and excitation energy

PRC 88 (2013) 044603

UNCLASSIFIED

Sensitivity to the optical potential

UNCLASSIFIED

Slide 13

Selected results for n+²³⁵U – neutron observables

		$E_{\rm ct}$ (MeV)			α				Experiment
			0.5	1.0	1.5	1.7	2.0		
Cuton y energy		235 U(<i>n</i> _{th} , <i>f</i>)							
		0.1	4.85	6.04	7.04	7.41	7.91	6.23	8.19±0.11 [14]
9									$6.51 \pm 0.31 [11]^{a}$
<u>≥</u> 8		0.14	4.62	5.73	6.65	6.99	7.46	6.18	7.45 ± 0.32 [10]
$\frac{10}{10}$ 7 $\frac{1}{10}$ $n_{\rm th}$ + ²³⁵	U								6.69 ± 0.30 [12]
· = 6 - · · · · · · · · · · · · · · · · · ·	-								7.78 ^b
E 5 -	-	0.3	3.94	4.76	5.43	5.68	6.02	5.68	6.11 ^b
4		1.0	1.93	2.10	2.24	2.29	2.35	2.34	2.33 ^b
8, 3		2.0	0.69	0.67	0.66	0.66	0.66	0.67	0.69 ^b
2		239 Pu($n_{\rm th}, f$)							
≪ 1		0.1	5.57	6.95	7.48	7.87	8.39	7.08	7.38°
0		0.14	5.25	6.52	7.05	7.39	7.88	7.01	7.23 ± 0.30 [12]
^{3.0} α=0.5 ENDF	1	0.3	4.40	5.34	5.72	6.38	6.33	6.44	5.95°
\geq $\alpha=1.0$ Verbinski \rightarrow		1.0	2.15	2.36	2.39	2.56	2.51	2.79	2.17 ^c
$\alpha = 1.7$ \rightarrow Pleasonton		2.0	0.76	0.75	0.74	0.74	0.74	1.06	0.72°
$2.0 = \frac{\alpha = 2.0}{PM}$ Peelle Peelle	-	252Cf(sf)							
E 15]	0.1	5.52	6.74	8.04	8.15	8.68	8.02	8.30 ± 0.08 [13]
		0.14	5.23	6.34	7.51	7.64	8.12	7.89	7.8 ± 0.3 [12]
5 1.0 - ·	-								8.01 ^d
₹ .	-	0.3	4.23	5.02	5.86	5.95	6.29	6.83	6.45 ^d
0.5		1.0	1.99	2.14	2.31	2.33	2.40	2.22	1.90 ^d
		2.0	0.73	0.73	0.74	0.74	0.74	0.77	0.67 ^d
NA E _{cut} [MeV]	UNCLASSI								

n_{th}+²³⁵U: gamma observables

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

²⁵²Cf (sf)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Isomeric states in CGMF

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Summary and outlook

- De-excitation of fission fragments described within the MCHF formalism
 - Gamma-ray strength
 - OMP for neutron emission
 - Neutron-gamma competition
- MC histories recorded and used to produce average quantities and for post ∻ processing
- Good quantitative agreement with experimental data ∻
 - Some discrepancies still exist (neutron/gamma spectra too soft)

UNCLASSIFIED

Requires some fine tuning (many parameters) ∻

Alamos

Future work: extension other actinides and extend the range of incident ∻ enegies

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA