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Overview

45 years of pioneering research at LANL

calculating nuclear potential energies

and dynamical models of fission has

matured to the point that we can

now quantitatively predict fission-fragment

distributions.



Method

Solve Dynamical Equations for the

Fissioning Nucleus

1. The relevant degrees of freedom

for fission describe the nuclear shape;

we use a five-parameter parabolic

spline to describe shapes.

2. Use the Macroscopic-Microscopic

method to calculate the potential

energy of the nucleus and its

gradient as a function of shape.



3. Define inertia and dissipation

tensors which relate the kinetic

energy and the energy disspation

rate to the time derivatives of

the shape coordinates.

4. Dissipation necessarily implies that

the system encounters fluctuating

forces

(Fluctuation-Dissipation Theorem).

5. The system is modeled using the

vector Langevin equation; in this

case a set of five coupled nonlinear

second-order stochastic

differential equations.



6. Do Monte-Carlo modeling of the

trajectories of fissioning nuclei in

this multidimensional space.

7. Accumulate distributions of

dynamical properties of the fragments

before neutron evaporation starts.



Model ingredients

Fixed in advance:

1. Potential-energy surface;

microscopic model fixed in 1973,

macroscopic model fixed in 2002.

Parameters found from nuclear masses

and a few fission-barrier heights. No

information on fission fragments.

Potential surface defined on a 5D

lattice of 9.4× 106 points. Use

splines to define potential and its

gradient everywhere.

2. Use Werner-Wheeler approximation

to irrotational inertia.



3. Starting distributions found

by normal-mode analysis and

quasi-equilibrium at the outermost

saddle point (Kramers solution;

equilibrated transverse modes.)

4. The final fragment kinetic

energy found by modeling the

separation of the deformed

fragments after scission.

5. Use a very simple level

density formula to define the

nuclear temperature from the

local excitation energy,

an = A/8.6



6. Use a particular experiment’s

mass resolution to broaden

predicted yields.



Model ingredients

Varied to reproduce 236U(n,f) yields:

1. Scale the surface piece of

the surface-plus-window dissipation

model for the dissipation tensor.

2. Scale the widths of the equilibrium

coordinate and momentum widths

of the transverse normal modes.

3. Introduce a random neck rupture

into the location of the plane

of scission.

4. Scission neck radius (unchanged

from initial value of 1.0 fm.)
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CGMF input data file (pre evap.)

Run C11; 3.0*eta_wall, sigx = 0.5, sigp = 1.0

235
U (n,f)  En ~ 0.001 MeV
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CGMF input data (pre evap.)

Run C11; 3.0*eta_wall, sigx = 0.5, sigp = 1.0.

235
U(n,f)  En ~ 0.001 MeV
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CGMF input data (pre evap.)

Run C11; <TKE> = 170.1; Madland syst. = 170.9

235
U (n,f)  En ~ 0.001 MeV
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CGMF input data (pre evap.)

Run 119; 3.0*eta_wall, sigx = 0.5, sigp = 1.0,

2.0 fm rand. neck, symmetric mode.

235
U (n,f)   En  ~ 0.001 MeV
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Data
Symmetric mode
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Model Predictions

235U(nth,f)

Model Eval.

• 〈TKE〉(En = 0): 170.2 170.9

• d〈TKE〉/dEn: -0.19 -0.15

• 〈TKE〉(Symm.): 151 152

• 〈TKE〉(A)

• dY (A)/dEn

• 〈E∗
L〉 > 〈E∗

H〉



Conclusions

1. A multidimensional Langevin model

quantitatively explains and correlates

many of the features of low-energy

actinide fission.

2. Inertial effects are necessary to

correlate fragment energies with

fragment mass yields.

3. Complicated microscopic inertias

are not required.

4. A dissipation is necessary to

model fragment energies.

5. The width of the mass distribution

is due to the random forces arising



from the dissipation; a dissipation

needed for fragment energetics.

6. No exotic shell structure is required

to quantitatively explain the mass

yield.

7. The dynamical time for fission

(saddle to scission time) is about

1× 10−20 s; longer times are not

consistent with fragment energies.

8. As was long ago inferred, low-energy

symmetric fission in actinides

proceeds through a separate mode

(path in configuration space)

from asymmetric fission.



9. Earlier studies have demonstrated

that at least 5 degress of freedom

are needed to capture the essence

of fission statics and dynamics.


