DE LA RECHERCHE À L'INDUSTRIE

Preliminary results on prompt fission neutron energy spectra measurements for ²³⁸U(n,f)

A. Sardet

T. Granier¹, B. Laurent¹, A. Oberstedt¹,², J. Taieb¹, C. Varignon¹

¹ CEA/DAM/Île-de-France ² Fundamental Physics, Chalmers University of Technology

> FIESTA 2014 workshop - Santa Fe 10 - 12 September 2014

2 Experimentals

2 Experimentals

- Important role in many applications
 - understanding of the fission process
 - accuracy of nuclear criticality calculations (conventional and advanced reactors, nonproliferation applications)

- Important role in many applications
 - understanding of the fission process
 - accuracy of nuclear criticality calculations (conventional and advanced reactors, nonproliferation applications)
- Theoretical description of prompt fission neutron energy spectra (PFNS) difficult

- Important role in many applications
 - understanding of the fission process
 - accuracy of nuclear criticality calculations (conventional and advanced reactors, nonproliferation applications)
- Theoretical description of prompt fission neutron energy spectra (PFNS) difficult
- Few experimental data sets (EXFOR) \rightarrow sometimes in disagreement to some extent
- Discrepancies between measured PFNS and evaluations

- Important role in many applications
 - understanding of the fission process
 - accuracy of nuclear criticality calculations (conventional and advanced reactors, nonproliferation applications)
- Theoretical description of prompt fission neutron energy spectra (PFNS) difficult
- Few experimental data sets (EXFOR) \rightarrow sometimes in disagreement to some extent
- Discrepancies between measured PFNS and evaluations
- 2009 : International program aiming at improving the adequacy and the quality of PFNS launched by the IAEA \rightarrow (INDC(NDS)-0541)

cea

Experimental setup

Experimental setup

Fission chamber

- Cylinder containing electrodes on which the actinides are deposited
- Ionization gas : P20 (20% methane and 80% argon)

Fission source (START signal)

Fission chamber

- Cylinder containing electrodes on which the actinides are deposited
- Ionization gas : P20 (20% methane and 80% argon)

Fission source (START signal)

- Organic scintillators coupled to photomultipliers
- Excellent n- γ discriminations properties
- Detection in the low energy domain \rightarrow threshold down to about 250 keV

Example of a TOF spectrum for ²³⁸U(n,f) at 5.2 MeV

- 4 MV Van de Graaff accelerator of the CEA Bruyères-le-Châtel
- Several setup configurations

Effect of the shielding

A. Sardet

Preliminary PFNS for ²³⁸U(n,f)

- Establishment of the optimum configuration for an open geometry
- ²³⁸U(n,f) PFNS
 - Very encouraging results for all incident neutron energies
 - Simulations showed an important distortion that needs to be corrected for
 - Limited statistics

 \Rightarrow Strong limitations coming from the fission chamber (\$\alpha\$-fission discrimination, timing resolution, scattering on the body and the electrodes)

- Low amount of matter in the beam line to reduce scattering
- Complete α -fission discrimination
- Improved timing resolution
- Optimisation of the $\frac{\text{signal}}{\text{noise}}$

cea

 \Rightarrow Complete α -fission discrimination

• Excellent timing resolution \rightarrow FWHM_{Fission\,chamber} = 0.73 \pm 0.01 ns (previously : 6 ns)

- Use of new optimized fission chambers
 - ✓ Low amount of matter (body and electrodes)
 - ✓ Complete α -fission discrimination
 - ✓ Excellent timing resolution

BUT small quantities of actinide (between 100 and 300 mg)

- Use of new optimized fission chambers
 - \checkmark Low amount of matter (body and electrodes)
 - Complete α -fission discrimination
 - ✓ Excellent timing resolution

BUT small quantities of actinide (between 100 and 300 mg)

- Need for high neutron fluxes
- Collimated neutron beam :
 - no need for shielding
 - increase the number of neutron detectors

WNR ($\chi - \nu$), NFS, LICORNE, ...