

Fission Activities at the ILL Lohengrin spectrometer : Review and Perspectives

Christophe Sage

Workshop Fiesta, Sept. 10-12 2014, Santa Fe, USA

Outline

Introduction : Motivations

- 1. The ILL and the Lohengrin spectrometer
- 2. Past, present and near future activities :
 - Mass Yields Measurements
 - Isotopic Yields measurements
 - Innovative measurements : symmetry + isomer ratios
- 3. The FIPPS project
- 4. Conclusion and perspectives

Motivations

Context of the fission yields studies :

- Post neutron fission yields needed in the current and innovative fuel cycles :
 - Inventory of spent fuel : isotopic composition
 - Residual power : minor actinides and fission products
 - Radiotoxicity of spent fuel
 - Fission yields variance-covariance matrices
- Measurements for fission process study :
 - Supply experimental data to put constraints on fission models and improve their predictive power
 - Inconsistency between models or evaluations and experiments for heavy fragments and symmetric region
 - Isomer ratios can give information on spin distribution and on available excitation energy at scission
- In this context, since 2007, various experiments from our collaboration have been performed to investigate fission yields with a special focus on the heavy mass region

1. The Lohengrin facility

ILL research reactor features :

- Very high neutron flux. Target placed close to the reactor core : 5.3x10¹⁴ n/cm²/s
- Study nuclei with low fission cross section (multiple capture technique)
- Possibility to use low mass samples (low energy loss, radiopratection issue)

1. The Lohengrin facility

Lohengrin spectrometer features :

- Combination of magnetic and electric field : FP selection according to A/q and E/q
- > 23 m length, travel time ~ 2 μ s : FP detected before β decay.
- > Excellent mass resolution $\Delta A/A = 0.3$ %
- Energy resolution : 1 %

1. The Lohengrin facility

Lohengrin spectrometer : A/q & E/q selection

A : mass, q : ionic charge, E : kinetic energy

Measurements with : an ionization chamber (mass yields)

ion beam

or with : Ge detectors (isotopic yields)

Mass yield measurements and analysis : (more details in the ND2013 conf. Proceedings)

Determination of the counting rate for a given mass A, ionic charge q and kinetic energy E.

Integrate over kinetic energy E and ionic charge q : E distribution at the mean q q distribution at the mean E

Determination of the correlation between E and q : scan on E for three different ionic charges

Correction for the burn-up of the sample :
Main source of uncertainties, inducing correlation

Self-normalization to 1 if all the masses of the heavy peak are measured

Experimental variance-covariance matrix

 $^{235}U(n_{th},f)$

A. Bail, PhD Thesis (2009)

F. Martin, PhD Thesis (2013) F. Martin et al., IEEE Conf. Proc. Of ANIMMA (2011)

²³⁹Pu(n_{th},f)

 $^{241}Pu(n_{th},f)$

A. Bail, PhD Thesis (2009)

F. Martin, PhD Thesis (2013) F. Martin et al., IEEE Conf. Proc. Of ANIMMA (2011)

 $^{241}Am(2n_{th},f)$

C. Amouroux et al., WONDER-2012, EPJ Web of Conf. 42 (2013) C. Amouroux et al. Proc. Fission-2013, Caen (2013)

2. Isotopic yields measurements

Isotopic yields measurement and analysis : (more details in the ND2013 conf. Proceedings)

- > Isotopic identification by γ spectrometry
- Background measurement and corrections :
 - Efficiency
 - Gamma-ray intensity
 - Summing correction
 - Burn-up of the sample

- ⁴¹₁₈Ar 16000 140 53 14000 ¹⁴⁰₅₅Cs 12000 ¹⁴⁰54**Xe** Counts 10000 ⁴⁰ 19 8000 ¹⁴⁰₅₅Cs 6000 4000 ¹⁴⁰₅₄Xe 2000 0 400 600 800 1000 1200 1400 γ -ray energy [keV]
- Integrate over kinetic energy E and ionic charge q
- Correction for the production and disappearance of nuclei by solving Bateman equations
- Normalization
- Experimental variance-covariance matrix

2. Isotopic yields measurements

²³³U(n_{th},f)

²³⁹Pu(n_{th},f)

F. Martin, PhD Thesis (2013)

2. Mass and isotopic yields measurements

- Mass yields measurements performed with an ionization chamber in the heavy mass region for ^{233,235}U(n_{th},f), ^{239,241}Pu(n_{th},f), ²⁴¹Am(2n_{th},f). Measurements foreseen for ^{243,245}Cm(n_{th},f).
- Isotopic yield measurements by gamma spectrometry (mainly in the heavy mass region) for ²³³U (finished) and ²⁴¹Pu, ²⁴¹Am (in progress)
- Development of a new analysis procedure : correlation (E,q), self-normalization and experimental variance-covariance matrix calculation.
- Investigation of the symmetry region for ^{233,235}U and ²⁴¹Pu mass yields :

Two components are observed in the kinetic energy distribution : presence of a heavy mass contaminant.

Dedicated experiments were performed to clarify this point and extract the yields in the symmetry region.

<u>1. Beam cut method</u>: for isomers living a few seconds

Allows to separate isomer state and GS feeding from a same gamma line

2. Coincidence method : for isomers living a few µs

y Spectrum : coincidence with ionization chamber

> 3. nanosecond isomers : Structure effect will deform the ionic charge distribution

Isomer ratios : Recent measurement on Lohengrin

Min/s Isomers : ¹³⁶*I*, ¹³²*Sb*, ¹³⁰*Sb*, ¹²⁹*Sb*, ¹²⁹*Sn*, ⁹⁹*Nb*, ⁹⁸*Y*

 μ s Isomers : ^{136}Xe , ^{132}Te , ^{129}Sb , ^{99}Y , ^{98}Y , ^{94}Y , ^{88}Br ns Isomers : Almost all isotopes in heavy mass region

Goal : comparison with fission simulating codes : Fifrelin (CEA Cadarache)

> Lohengrin limits : 2 μ s TOF \rightarrow no prompt particle study

> FIPPS Goals :

- Direct measurement of prompt particles
- Fission product spectroscopy
- Neutron emission
- Short lifetime isomers

3. The FIPPS Project

FIPPS : FIssion Product Prompt gamma-ray Spectrometer

- Project of new instrument, complementary to the Lohengrin facility
- n/gamma detectors coupled to a fission fragment filter
- ➤ Goal of the filter :
 - Characterize the complementary mass (A₂, E_k)
 - Clean the gamma spectrum to identify the discrete gamma rays of (A_2, Z_2)

3. The FIPPS Project

- > Which filter to use : Gas Filled Magnetic device (GFM)
- > Existing results of Jülich GFM spectrometer to foresee the design
- Reconversion of the RED magnet @Lohengrin for GFM tests

3. The FIPPS Project

Reconversion of the RED magnet @Lohengrin for GFM tests

Mass 90 300 Mass 85 200 100 15000 13500 14000 14500 15500 16000 16500 12500 13000 B_{Red} (Gauss)

- Experimental tests allow to characterize the dispersion/resolution of the GFM in mass and isotope
- Comparison with a dedicated Monte Carlo simulation code

(PhD A. Chebboubi)

Conclusion et perspectives

- Mass and isotopic yields measurements on-going at the Lohengrin spectrometer for various isotopes : ^{233,235}U, ^{239,241}Pu, ²⁴¹Am and ^{243,245}Cm.
- Development of a new analysis procedure : correlation (E,q), self-normalization and experimental variance-covariance matrix calculation.
- > Investigation of the symmetry region for 233,235 U and 241 Pu mass yields.
- Isomer ratios measurements on-going with three different techniques for isomers with lifetimes from ns to second. Goal : comparision with fission codes (Fifrelin)
- FIPPS project : new instrument @ILL. Accepted at the ILL Endurance program (7 upgrades and 7 new instruments for 2020) in 3 phases :
 - Phase I : Ge array only at H22 end position
 - Phase II : H22 end position with spectro (GFM)
 - Phase III : dedicated casemate
- Potential interests : detailed spectroscopy of neutron rich nuclei, nuclear fission study, fast neutron beam (moveable instrument)

Conclusion et perspectives

Collaboration for the measurement campaign @Lohengrin :

C. Sage, G. Kessedjian, A. Chebboubi, A. Bidaud, A. Billebaud, N. Capellan, S. Chabod, O. Méplan LPSC, UJF, INP, Grenoble

H. Faust, U. Köster, A. Blanc, P. Mutti, ILL, Grenoble

O. Litaize, O. Sérot, D. Bernard CEA/Cadarache

A. Letourneau, S. Panebianco, T. Materna, C. Amouroux CEA/Saclay

L. Mathieu, CENBG, Bordeaux

C. O. Bacri, X. Doligez, IPN, Orsay