Why the finite element method could be a powerful tool to model fission dynamic

David Regnier

LLNL, Nuclear Theory and Modeling Group

September 10-12, 2014

Supervisors: Nicolas Schunck (LLNL/Nuclear Theory and Modeling Group), Noël Dubray (CEA/DAM-DIF)

Context	TD-GCM introduction	1	Finite element analys	is Status	of our solver	Conclusio
Fission	n process	2 ¹⁴⁵ .	8		,	
	0 Scission	10 ⁻²⁰ 90% KE	• 10 ⁻¹⁸ 10 Prompt n emission	Prompt ¥ and internal conversion	10 ⁻⁶ β ⁻ decay, delayed n and γ	► t (s)
	10 ⁻¹⁵	10 ⁻¹³	10-10	10-7		• u (iii)

What are the properties of the fission fragments after scission ? Mass yields Y(A), Total Kinetic Energy Y(TKE), spin distribution ...

Context	TD-GCM introduction	Finite element analysis	Status of our solver	Conclusion

Table of contents

1 Time Dependent Generator Coordinate Method (TD-GCM)

The TD-GCM + GOA approach

- Goal: Predict the evolution of the fissioning system from a compound nucleus state.
- Mean: Microscopic approach.

Scheme:

The TD-GCM + GOA approach

- Goal: Predict the evolution of the fissioning system from a compound nucleus state.
- Mean: Microscopic approach.

Scheme:

The TD-GCM + GOA approach

This framework yields the following time evolution equation:

Evolution equation $i\hbar\frac{\partial}{\partial t}g(\vec{q},t) = \left[-\frac{\hbar^2}{2}\sum_{ij}\frac{\partial}{\partial q_i}B_{ij}^{(\vec{q})}\frac{\partial}{\partial q_j} + V(\vec{q})\right] \cdot g(\vec{q},t)$ (1)

A diffusion-like equation for the collective variables $\vec{q} = q_1, \cdots, q_n$ With:

- An unknown function $g(\vec{q}, t)$, linked to the $f(\vec{q}, t)$ coefficients of the $\psi(t)$ expression
- An inertia tensor $B^{-1}(\vec{q})$
- A potential energy surface $V(\vec{q})$

Example of a $n+^{239}Pu$ fission

- Choice of the collective variables:
 - elongation(Q_{20}),
 - mass assymetry(Q₃₀)
- Calculation of the collective inertia and potential (largest computational budget)
- Construction of an initial wave packet $g(\vec{q}, t = 0)$
- Computation of the time evolution

Figure 1: Interpolated potential energy surface for $\left(n+^{239}\text{Pu}\right)$ fission

Example of a $n+^{239}Pu$ fission

- Choice of the collective variables:
 - elongation(Q_{20}),
 - mass assymetry(Q₃₀)
- Calculation of the collective inertia and potential (largest computational budget)
- Solution of an initial wave packet $g(\vec{q}, t = 0)$
- Computation of the time evolution

Figure 1: Interpolated potential energy surface for $\left(n+^{239}\text{Pu}\right)$ fission

Example of a $n+^{239}Pu$ fission

- Choice of the collective variables:
 - elongation(Q_{20}),
 - mass assymetry(Q₃₀)
- Calculation of the collective inertia and potential (largest computational budget)
- Solution of an initial wave packet $g(\vec{q}, t = 0)$
- Computation of the time evolution

Figure 1: Interpolated potential energy surface for $(n\!+^{239}\text{Pu})$ fission

Context	TD-GCM introduction	Finite element analysis	Status of our solver	Conclusion

Table of contents

2 Solving the TD-GCM with the Finite Element Method

3 Status of our TD-GCM+GOA solver

Previous studies

Previous work using the TD-GCM approach for fission:

- J.F Berger et al., Comp. Phys. Comm. 63, 365 (1991)
- H. Goutte et al., Phys. Rev. C 71, 024316 (2005)
- W. Younes et al., LLNL-TR-586678 (2012)

Discretization of the collective variables based on:

- a finite difference method,
- a regular mesh.
- \rightarrow Only 2 collective variables

Can finite element analysis overcome this limitation ?

Finite element VS Finite difference

Finite difference

- Generate a mesh
- Compute derivatives based on the neighboor points

$$\frac{\partial g}{\partial x}|_{x_i} = \frac{g(x_{i+1}) - g(x_{i-1})}{2\Delta x}$$

• Deduce the linear system

Differential equation 1D:

$$-\frac{\partial^2 g}{\partial x} = b(x)$$
with $g(x_{min}) = g(x_{max}) = 0$

Finite element VS Finite difference

Finite element

- Generate a mesh
- Choose an interpolation inside each element

$$ightarrow \, g_{approx} = \sum_i G_i \cdot \psi_i$$

Express the variational form

$$\forall \phi : \int_{x} \phi \cdot \left[b(x) + \frac{\partial^2 g}{\partial x} \right] = 0$$

Oeduce a linear system
 ∀i ∈ [0, dim] :

$$\int_{x} \psi_{i} \cdot \left[b(x) + \frac{\partial^{2} g_{approx}}{\partial x} \right] = 0$$

Differential equation 1D: $-\frac{\partial^2 g}{\partial x} = b(x)$ with $g(x_{min}) = g(x_{max}) = 0$

Increasing accuracy with refinement

Two main refinement techniques:

- h-refinement: decrease the maximum size (h) of the elements
- p-refinement: increase the polynomial order (p) of the interpolation function inside the elements

Before p-refinement: $g_{approx} = ax + b$ After p-refinement: $g_{approx} = ax^2 + bx + c$

Context	TD-GCM introduction	Finite element analysis	Status of our solver	Conclusion

Table of contents

Status of our TD-GCM+GOA solver

Recent developements

December 2013:

- Functional finite element method solver for N collective variables
- Only using polynomial interpolation of degree 1

New capabilities:

- Yield calculation
- Initial wave packet calculation
- Generalization to any degree of polynomial interpolation (p-refinement enabled)

Tests on Toy-models:

- Free wave packet
- Harmonic oscillator 1D, 2D

Preliminary results on a $n+^{239}Pu$ fission

Figure 3: ²⁴⁰Pu potential energy surface for the collective variable q_{20} and q_{30}

Preliminary results on a $n+^{239}Pu$ fission

Preliminary calculation:

- Interpolation polynomials of degree 2
- Smoothed yields

To be checked:

- $\bullet\,$ Size of the simulation box
- Numerical accuracy

To be further studied:

- Position of the frontier for the yield calculation
- Fragment masses at the frontier
- Additional collective dimensions

Conclusion & Perspectives

- Solution Time Dependent Coordinate Generator Method (TD-GCM):
 - Produces a Shrödinger like equation
- Pinite element method:
 - Powerful refinement methods
- Solver current status:
 - Tested on toy-models
 - Preliminary calculations on n +²³⁹Pu

Perspectives

- \bullet Optimizations \rightarrow N-D calculations
- Production of temperature dependent results (trends of the yields as a function of the incident neutron energy)
- Uncertainty analysis

Context	TD-GCM introduction	Finite element analysis	Status of our solver	Conclusion

Thank you for your attention !

