

Characteristics of prompt fission γ-ray emission – advances in measurements, evaluations and predictions

A. Oberstedt

FIESTA 2014 – FIssion ExperimentS and Theoretical Advances

Santa Fe, New Mexico, USA Sep. 8 – 12, 2014

- Historical background the 1970s
- Evaluation of PFGS characteristics
- Renaissance the 2010s
- New evaluation systematics
- Fast neutron induced fission
- Predictions for ²³⁸U(n, f)
- Recent results
- Predictions for ²³⁵U(n, f)
- Conclusions
- Outlook

Historical background Experiments

- First comprehensive studies of prompt fission γ -ray spectra (PFGS) in the 1970s on:
 - n_{th} + ²³³U
 - n_{th} + ²³⁵U
 - n_{th} + ²³⁹Pu
 - ²⁵²Cf (sf)
- Measured PFGS characteristics:
 - $E_{\gamma,tot}$ = average total γ -energy/fission
 - ϵ_{γ} = average γ -energy/photon
 - \overline{v}_{γ} = average γ -multiplicity

Historical background Evaluations

1972: Nifenecker et al. (NPA 189 (1972) 285)

• $E_{\gamma,tot}(\overline{v}_n) = 0.75 \overline{v}_n + 2.0$

2001: Valentine (ANE 28 (2001) 191)

- $E_{\gamma,tot}(\overline{v}_n, A, Z) = \phi(A, Z) \overline{v}_n + 4.0 \text{ (MeV)}$ with $\phi(A, Z) = 2.51(\pm 0.01) - 1.13 \cdot 10^{-5}(\pm 7.2 \cdot 10^{-8}) Z^2 A^{1/2}$
- $\epsilon_{\gamma}(A,Z) = -1.33(\pm 0.05) 119.6 \cdot 10^{-5}(\pm 2.5) Z^{1/3} / A$
- $\overline{v_{\gamma}}(\overline{v_{n}},A,Z) = E_{\gamma,tot}(\overline{v_{n}},A,Z) / \varepsilon_{\gamma}(A,Z)$

Note: A and Z dependences are purely empirical!

- In the 2010s: new PFGS measurements and calculations motivated by NEA high priority request lists for
 - n_{th} + ²³⁵U and n_{th} + ²³⁹Pu
- Investigated processes:
 - ${}^{235}U(n_{th}, f), {}^{239,241}Pu(n_{th}, f), {}^{252}Cf(sf)$
- Experimental groups:
 - LANL DANCE
 - IRMM/Chalmers/KFKI + others
- Theoretical groups (Monte Carlo Hauser Feshbach):
 - CEA Cadarache (Serot, Litaize, Regnier)
 - LANL (Talou et al.)
 - K.-H. Schmidt and others

New results - overview Our work

- Experiments at IRMM and KFKI Budapest:
 - ²⁵²Cf(sf)
 - ²³⁵U(n_{th}, f)
 - ²⁴¹Pu(n_{th}, f)

- R. Billnert et al., PRC 87 (2013)
- A. Oberstedt et al., PRC 87 (2013)
- S. Oberstedt et al., PRC 90 (2014)

- Measured:
 - prompt fission γ-ray spectrum (PFGS)
- Determined:
 - average multiplicity
 - mean energy per photon
 - total photon energy
- Deduced:
 - multiplicity distribution

Experimental setup:

fission trigger: photons:

PPAC BaF₂ array

Experimental setup:

fission trigger: photons:

PFGS:

measured

0.5

 E_{γ} (MeV)

fission trigger: photons:

10⁻²

10⁻³

0.1

PFGS:

setup:

5

Experimental setup:

fission trigger: photons:

PFGS:

multiplicity distribution:

252Cf(SF) Chyzh et al. Chyzh

0.12

0.1

0.08

0.06

0.04

0.02

measured

 $\overline{\mathbf{v}}_{\mathbf{v}}$

Experimental setup:

fission trigger: photons:

PFGS:

multiplicity distribution:

measured

Photons / (MeV fission)

10

10

10

10

10⁻³

General impression for the fissioning systems $^{252}Cf(sf)$, $^{235}U(n_{th}, f)$ and $^{241}Pu(n_{th}, f)$

• $E_{\gamma,tot}$ and ϵ_{γ} :

good agreement between our results and those from the early 1970s, while values from DANCE are higher

• $\overline{\mathbf{v}_{\gamma}}$: our results agree well with the 1970s results, but the DANCE values are somewhat lower

 Impact of our new results on evaluation according to Valentine?

Observe: \overline{v}_n taken from experiments

Observe: \overline{v}_n taken from experiments and ENDF/B-VII.1

Observe: \overline{v}_n taken from experiments. and ENDF/B-VII.1

Observe: \overline{v}_n taken from experiments. and ENDF/B-VII.1

Observe: \overline{v}_n taken from experiments

Observe: \overline{v}_n taken from experiments and ENDF/B-VII.1

Andreas Oberstedt

Observe: \overline{v}_n taken from experiments. and ENDF/B-VII.1

Andreas Oberstedt

Observe: \overline{v}_n taken from experiments. and ENDF/B-VII.1

Andreas Oberstedt

- PFGS characteristics as function of A and Z of the compound system
- Agreement between new experimental results and "Valentine's evaluation" is rather good
- Parameters might need an adjustment
- Estimate (interpolations/extrapolation) of PFGS characteristics is possible for nuclei, which are not accessible experimentally
- However: only valid for thermal neutron induced and spontaneous fission?
- Attempt: fast neutron induced fission!
- Example below: ²³⁸U(n, f)!

Fast neutron induced fission Motivation

Why n + 238 U PFGS?

- Important nuclide for fast reactors
- one of six isotopes in the focus of the CIELO pilot project
- First preliminary experimental results from CEA in Bruyères-le-Châtel are available
 - at $E_n = 1.7$ and 15.6 MeV (BGO)
 - as well as E_n = 1.7 and 5.2 MeV (BGO), new! (Laborie et al., private communication)
- New experiment performed recently at IPN Orsay
 - LICORNE facility, covering energy range between $E_n = 0.7$ and 4 MeV
 - First preliminary results obtained

²³⁸U(n, f) PFGS characteristics

Prompt fission neutron multiplicity

- prompt fission neutrons from ENDF/B-VII.1
- pre-fission neutrons subtracted
- prompt neutrons from fragments for PFGS characteristics only those may be related to prompt fission γ-ray emission!

• from PFGS systematics as function of A and Z

$$\begin{array}{c} (E_{\gamma,tot} - 4)/\overline{v}_n \\ \epsilon_{\gamma} \\ \overline{v}_{\gamma} / \overline{v}_n \end{array} \right\} for n + {}^{238}U$$

from PFGS systematics as function of A and Z

• from PFGS systematics as function of A and Z

$$\begin{array}{c} (E_{\gamma,tot} - 4)/\overline{v}_n \\ \epsilon_{\gamma} \\ \overline{v}_{\gamma} / \overline{v}_n \end{array} \right\} for n + 238U$$

• using $\overline{v}_n(E_n) = \overline{v}_{ff}(E_n)$

• from PFGS systematics as function of A and Z

$$\begin{array}{c} (E_{\gamma,tot} - 4)/\overline{v}_n \\ \epsilon_{\gamma} \\ \overline{v}_{\gamma} / \overline{v}_n \end{array} \right\} for n + {}^{238}U$$

• using
$$\overline{v}_n(E_n) = \overline{v}_{ff}(E_n)$$

• assuming: only energy dependence = $\overline{v}_{ff}(E_n)$

- from PFGS systematics as function of A and Z

$$\begin{array}{c} (E_{\gamma,tot} - 4)/\overline{v}_n \\ \epsilon_{\gamma} \\ \overline{v}_{\gamma} / \overline{v}_n \end{array} \right\} for n + 238 U$$

• using
$$\overline{v}_n(E_n) = \overline{v}_{ff}(E_n)$$

- assuming: only energy dependence = $\overline{v}_{ff}(E_n)$
- calculating $E_{\gamma,tot}(E_n)$ $\overline{v}_{\gamma}(E_n)$ $\epsilon_{\gamma}(E_n) = E_{\gamma,tot}(E_n)/\overline{v}_{\gamma}(E_n)$

²³⁸U(n, f) PFGS characteristics Calculating energy dependence

• from PFGS systematics as function of A and Z

$$\begin{array}{c} (E_{\gamma,tot} - 4)/\overline{v}_n \\ \epsilon_{\gamma} \\ \overline{v}_{\gamma} / \overline{v}_n \end{array} \right\} for n + 238 U$$

• using
$$\overline{v}_n(E_n) = \overline{v}_{ff}(E_n)$$

- assuming: only energy dependence = $\overline{v}_{ff}(E_n)$
- calculating $E_{\gamma,tot}(E_n)$

$$v_{\gamma}(E_n)$$

 $\varepsilon_{\gamma}(E_n) = E_{\gamma,tot}(E_n)/\overline{v}_{\gamma}(E_n)$

- comparison with model calculations
- comparison with preliminary experimental results

- Tudora: Point-by-Point model
- Litaize et al.: FIFRELIN code (ND 2013, to appear in NDS)
- Laborie et al.: preliminary results (2014)

- Litaize et al.: FIFRELIN code (ND 2013, to appear in NDS)
- Laborie et al.: preliminary results (2014)

Mean energy per photon

- Litaize et al.: FIFRELIN code (calculated by $E_{\gamma,tot}/\overline{v_{\gamma}}$)
- Laborie et al.: preliminary results (2014)

Next summary ...

- Predictions of PFGS characteristics as function of incident neutron energy have been presented for ²³⁸U(n, f)!
- Investigated energy range: $E_n = 0 \dots 20 \text{ MeV}$
- Good agreement with both preliminary experimental results and model calculations for
 - $E_{\gamma,tot}(E_n)$
 - $\epsilon_{\gamma}(E_n)$
 - $v_{\gamma}(E_n)$

- ${}^{235}U(n, f)$ at $E_n = 1.5$ MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week)

- 235 U(n, f) at E_n = 1.5 MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week)

- 235 U(n, f) at E_n = 1.5 MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week) –
- $\begin{array}{l} \mbox{preliminary:} \\ E_{\gamma,tot} = (7.4 \pm 0.7) \mbox{ MeV} \\ \overline{v}_{\gamma} &= (8.7 \pm 0.4) \\ \epsilon_{\gamma} &= (0.85 \pm 0.07) \mbox{ MeV} \end{array}$

- 235 U(n, f) at $E_n = 1.5$ MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week) –

Predictions! <---

 $\begin{array}{c} \text{preliminary:} \\ E_{\gamma,\text{tot}} = (7.4 \pm 0.7) \text{ MeV} \\ \overline{v}_{\gamma} = (8.7 \pm 0.4) \\ \epsilon_{\gamma} = (0.85 \pm 0.07) \text{ MeV} \end{array}$

Average total energy per fission

- Tudora et al.: Phys. Procedia 31 (2012)
- LICORNE: preliminary results (2014)
- DANCE: Chyzh et al. (2013) and (2014)

- LICORNE: preliminary results (2014)
- DANCE: Chyzh et al. (2013) and (2014)

Mean energy per photon

- LICORNE: preliminary results (2014)
- DANCE: Chyzh et al. (2013) and (2014)

Recently ...

- 235 U(n, f) at E_n = 1.5 MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week) –
- preliminary: $E_{\gamma,tot} = (7.4 \pm 0.7) \text{ MeV}$ $\overline{v}_{\gamma} = (8.7 \pm 0.4)$ $\epsilon_{\gamma} = (0.85 \pm 0.07) \text{ MeV}$
- ^{240,242}Pu(sf), IRMM (on-going)
 - 1 LaBr₃:Ce detector (1 week)

Recently ...

- ${}^{235}U(n, f)$ at $E_n = 1.5$ MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week) –

- ^{240,242}Pu(sf), IRMM (on-going)
 - 1 LaBr₃:Ce detector (1 week) –
 ²⁴⁰Pu(sf)
 - $E_{\gamma,tot} = (6.9\pm0.7) \text{ MeV}$ $\overline{v}_{\gamma} = (7.7\pm0.5)$
 - $\overline{\mathbf{v}}_{\gamma} =$ $\varepsilon_{\gamma} =$
- (0.9±0.1) MeV

- preliminary: $E_{\gamma,tot} = (7.4\pm0.7) \text{ MeV}$ $\overline{v}_{\gamma} = (8.7\pm0.4)$ $\epsilon_{\gamma} = (0.85\pm0.07) \text{ MeV}$
- preliminary: ²⁴²Pu(sf) (6.9±0.3) MeV (7.7±0.4) (0.89±0.06) MeV

New evaluation PFGS average total energy per fission

Observe: \overline{v}_n taken from ENDF/B-VII.1.

FIESTA 2014, Santa Fe, New Mexico, USA, Sep. 8-12, 2014

New evaluation PFGS mean energy per photon

New evaluation PFGS average multiplicity

Observe: \overline{v}_n taken from ENDF/B-VII.1.

- ${}^{235}U(n, f)$ at $E_n = 1.5$ MeV, LICORNE (2013)
 - 14 BaF₂ detectors
 - 3 LaBr₃:Ce detectors (1 week) preliminary:
 - $\begin{array}{l} {\sf E}_{\gamma,tot} = (7.4 {\pm} 0.7) \; {\sf MeV} \\ \overline{{\sf v}}_{\gamma} &= (8.7 {\pm} 0.4) \\ \epsilon_{\gamma} &= (0.85 {\pm} 0.07) \; {\sf MeV} \end{array}$
- ^{240,242}Pu(sf), IRMM (on-going)
 - 1 LaBr₃:Ce detector (1 week) –
 ²⁴⁰Pu(sf)
 - $E_{\gamma,tot} = (6.9\pm0.7) \text{ MeV}$ $\overline{v}_{\gamma} = (7.7\pm0.5)$ $\varepsilon_{\gamma} = (0.9\pm0.1) \text{ MeV}$
- preliminary: ²⁴²Pu(sf) (6.9±0.3) MeV (7.7±0.4) (0.89±0.06) MeV
- ²³⁵U,^{239,241}Pu(n, f) and ²⁵²Cf(sf), DANCE (2014)
 - 160 BaF₂ detectors

FIESTA 2014, Santa Fe, New Mexico, USA, Sep. 8-12, 2014

Conclusions

- Systematics of PFGS characteristics as function of A and Z of the compound system makes sense, <u>not only for thermal neutron induced and</u> spontaneous fission
- Original parameters from Valentine's description need an adjustment
- Empirical A and Z dependence must be verified
- More experimental data needed
- Predictions for fast neutron induced fission of $n + {}^{238}U$ and $n + {}^{235}U$ presented
- Good agreement of our predictions with both calculations and preliminary experimental results!

- From LICORNE experiment ($E_n = 1.5 \text{ MeV}$):
 - final analysis of PFGS for ^{235,238}U(n, f) and ²³²Th(n, f)
- Laborie et al.:
 - final analysis of PFGS for ²³⁸U(n, f)
- IRMM:
 - final analysis of PFGS for ^{240,242}Pu(sf)
- New experiment at KFKI Budapest:
 - PFGS from ²³⁹Pu(n_{th}, f) spring 2015 (planned)
- New experiment with LICORNE at IPN Orsay:
 - PFGS from ²³⁹Pu(n, f) summer 2015 (planned)
- Updated systematics!
- New predictions!

The collaborators

R. Billnert, A. Oberstedt, S. Oberstedt

with invaluable support from

T. Belgya, R. Borcea, T. Bryś, C. Chaves, Th. Gamboni, W. Geerts,

A. Göök, C. Guerrero, F.-J. Hambsch, Z. Kis, M. Lebois, T. Martinez,

L. Szentmiklosi, K. Takács, M. Vidali, J. Wilson and others

Parts of this work were supported by both the ERINDA programme (agreement number 269499) and the EFNUDAT programme (agreement number 31027) of the European Commission

Thank you!

NEUTRON PRODUCTION IN INVERSE KINEMATICS

mercredi 2 octobre 2013

Lithium Inverse Cinematiques ORsay NEutron source

> p(⁷Li,⁷Be)n reaction in inverse kinematics

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

MONO-ENERGETIC NEUTRON SOURCES

mercredi 2 octobre 2013

>Typically over 99% of neutrons 'wasted"

>Wasted neutrons contribute to the room background

> Placement of gamma detectors impossible without heavy shielding

EXPERIMENTAL SETUP: MEASUREMENT OF PROMPT γ FOR FISSILE NUCLEI (JULY 2013)

LaBr₃ from IPN & IRMM ($\delta t = 300 \text{ ps}; \delta E = <3\% @ .662 \text{ MeV}$)

BaF₂ from Château de Cristal (δt = 600 ps; δE = 10% @ 1.3 MeV) **Ionisation Chamber** ²³⁵⁻²³⁸U target 10 mg (300 μg/cm²); Ø = 8 cm; (δt = 700 ps; δE = 500 keV; ε = 100%)

BaF₂ from Château de Cristal (δt = 600 ps; δE = 10% @ 1.3 MeV)

Measured ²⁵²Cf(sf) prompt fission γ -ray energy spectrum \rightarrow e.g. zooming into region around 3 MeV

Theory-2, Biarritz (France), November 28-30, 2012

Unfolding response function (an illustration)

Simulating response function for mono-energetic γ-rays, distance: FWHM from energy resolution measurements

Adjusting simulated spectra to measured γ-ray spectrum and determining the scaling factors

Properly normalized scaling factors

 \rightarrow emission spectrum!

Fast neutron induced fission Prerequisites

According to Valentine:

- $E_{\gamma,tot}$ depending linearly on \overline{v}_n , ε_{γ} independent
- $\overline{\mathbf{v}}_{\gamma}$ approximately proportional to $\overline{\mathbf{v}}_{n}$
- Knowledge of $\overline{v}_n(E_n)$ important

In case of multiple chance fission:

- (n, f) cross section has to be known (ENDF/B-VII.1)
- Contributions from different fission channels have to be taken into account
- $\overline{v}_n(E_n)$ for all fissioning systems (ENDF/B-VII.1)

ENDB/B-VII.1

Contributions from different fission channels.

ENDB/B-VII.1

²³⁸U(n, f) PFGS characteristics Prompt fission neutron multiplicity

Chen & Liu:

prompt fission neutrons =
evaporation neutrons (pre-fission) +
prompt neutrons from fission fragments!

²³⁸U(n, f) PFGS characteristics Prompt fission neutron multiplicity

Chen & Liu:

prompt fission neutrons =
evaporation neutrons (pre-fission) +
prompt neutrons from fission fragments!
only the latter may be related to PFGS!

Claim:

Andreas Oberstedt

FIESTA 2014, Santa Fe, New Mexico, USA, Sep. 8-12, 2014

Energetics:

$$\begin{split} E_{x}^{A_{CN}} &= S_{n}^{A_{CN}} + E_{n}; \qquad \left\langle E_{n} \right\rangle = \frac{3}{2}T = \frac{3}{2}\sqrt{\frac{7.524MeV \cdot E_{x}^{A_{CN}}}{A_{CN}}} \quad *) \\ E_{x}^{A_{CN}-1} &= S_{n}^{A_{CN}-1} + E_{n}^{'} = E_{x}^{A_{CN}} - S_{n}^{A_{CN}} - \left\langle E_{n} \right\rangle; \qquad \left\langle E_{n}^{'} \right\rangle = \frac{3}{2}T^{'} = \frac{3}{2}\sqrt{\frac{7.524MeV \cdot E_{x}^{A_{CN}-1}}{A_{CN}-1}} \\ E_{x}^{A_{CN}-2} &= S_{n}^{A_{CN}-2} + E_{n}^{''} = E_{x}^{A_{CN}-1} - S_{n}^{A_{CN}-1} - \left\langle E_{n}^{'} \right\rangle; \qquad \left\langle E_{n}^{''} \right\rangle = \frac{3}{2}T^{''} = \frac{3}{2}\sqrt{\frac{7.524MeV \cdot E_{x}^{A_{CN}-1}}{A_{CN}-1}} \\ etc. \end{split}$$

*) According to Chen & Liu: $E_x^{A_{CN}} = \frac{A_{CN}}{7.524 MeV} T^2$

Andreas Oberstedt

FIESTA 2014, Santa Fe, New Mexico, USA, Sep. 8-12, 2014

²³⁸U(n, f) PFGS characteristics

Prompt fission neutron multiplicity

- prompt fission neutrons from ENDF/B-VII.1
- pre-fission neutrons subtracted
- prompt neutrons from fragments for PFGS characteristics